Scaling Laws for Downstream Task Performance of Large Language Models
- URL: http://arxiv.org/abs/2402.04177v1
- Date: Tue, 6 Feb 2024 17:31:20 GMT
- Title: Scaling Laws for Downstream Task Performance of Large Language Models
- Authors: Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas,
Sergei Vassilvitskii, Sanmi Koyejo
- Abstract summary: We study how the choice of the pretraining data affects downstream performance (translation quality) as judged by two metrics: downstream cross-entropy and BLEU score.
With sufficient alignment, both downstream cross-entropy and BLEU score improve monotonically with more pretraining data.
- Score: 28.904224842085064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling laws provide important insights that can guide the design of large
language models (LLMs). Existing work has primarily focused on studying scaling
laws for pretraining (upstream) loss. However, in transfer learning settings,
in which LLMs are pretrained on an unsupervised dataset and then finetuned on a
downstream task, we often also care about the downstream performance. In this
work, we study the scaling behavior in a transfer learning setting, where LLMs
are finetuned for machine translation tasks. Specifically, we investigate how
the choice of the pretraining data and its size affect downstream performance
(translation quality) as judged by two metrics: downstream cross-entropy and
BLEU score. Our experiments indicate that the size of the finetuning dataset
and the distribution alignment between the pretraining and downstream data
significantly influence the scaling behavior. With sufficient alignment, both
downstream cross-entropy and BLEU score improve monotonically with more
pretraining data. In such cases, we show that it is possible to predict the
downstream BLEU score with good accuracy using a log-law. However, there are
also cases where moderate misalignment causes the BLEU score to fluctuate or
get worse with more pretraining, whereas downstream cross-entropy monotonically
improves. By analyzing these observations, we provide new practical insights
for choosing appropriate pretraining data.
Related papers
- Bayesian scaling laws for in-context learning [72.17734205418502]
In-context learning (ICL) is a powerful technique for getting language models to perform complex tasks with no training updates.
We show that ICL approximates a Bayesian learner and develop a family of novel Bayesian scaling laws for ICL.
arXiv Detail & Related papers (2024-10-21T21:45:22Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Downstream bias mitigation is all you need [2.7824025230291003]
This paper studies the extent of biases absorbed by large language models (LLMs) during pre-training and task-specific behaviour after fine-tuning.
We find that pre-training does matter, but after the model has been pre-trained, even slight changes to co-occurrence rates in the fine-tuning dataset has a significant effect on the bias of the model.
arXiv Detail & Related papers (2024-08-01T14:52:04Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Temporal Scaling Law for Large Language Models [24.12384260752973]
We propose the novel concept of Temporal Scaling Law, studying how the test loss of an LLM evolves as the training steps scale up.
In contrast to modeling the test loss as a whole in a coarse-grained manner, we break it down and dive into the fine-grained test loss of each token position.
We derive the much more precise temporal scaling law by studying the temporal patterns of the parameters in the dynamic hyperbolic-law.
arXiv Detail & Related papers (2024-04-27T05:49:11Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - Inverse Scaling: When Bigger Isn't Better [80.42834197416444]
Large language models (LMs) show predictable improvements to overall loss with increased scale.
We present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale.
arXiv Detail & Related papers (2023-06-15T20:11:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.