Temporal Scaling Law for Large Language Models
- URL: http://arxiv.org/abs/2404.17785v2
- Date: Sun, 16 Jun 2024 11:06:01 GMT
- Title: Temporal Scaling Law for Large Language Models
- Authors: Yizhe Xiong, Xiansheng Chen, Xin Ye, Hui Chen, Zijia Lin, Haoran Lian, Zhenpeng Su, Jianwei Niu, Guiguang Ding,
- Abstract summary: We propose the novel concept of Temporal Scaling Law, studying how the test loss of an LLM evolves as the training steps scale up.
In contrast to modeling the test loss as a whole in a coarse-grained manner, we break it down and dive into the fine-grained test loss of each token position.
We derive the much more precise temporal scaling law by studying the temporal patterns of the parameters in the dynamic hyperbolic-law.
- Score: 24.12384260752973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Large Language Models (LLMs) have been widely adopted in a wide range of tasks, leading to increasing attention towards the research on how scaling LLMs affects their performance. Existing works, termed Scaling Laws, have discovered that the final test loss of LLMs scales as power-laws with model size, computational budget, and dataset size. However, the temporal change of the test loss of an LLM throughout its pre-training process remains unexplored, though it is valuable in many aspects, such as selecting better hyperparameters \textit{directly} on the target LLM. In this paper, we propose the novel concept of Temporal Scaling Law, studying how the test loss of an LLM evolves as the training steps scale up. In contrast to modeling the test loss as a whole in a coarse-grained manner, we break it down and dive into the fine-grained test loss of each token position, and further develop a dynamic hyperbolic-law. Afterwards, we derive the much more precise temporal scaling law by studying the temporal patterns of the parameters in the dynamic hyperbolic-law. Results on both in-distribution (ID) and out-of-distribution (OOD) validation datasets demonstrate that our temporal scaling law accurately predicts the test loss of LLMs across training steps. Our temporal scaling law has broad practical applications. First, it enables direct and efficient hyperparameter selection on the target LLM, such as data mixture proportions. Secondly, viewing the LLM pre-training dynamics from the token position granularity provides some insights to enhance the understanding of LLM pre-training.
Related papers
- Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - Bayesian scaling laws for in-context learning [72.17734205418502]
In-context learning (ICL) is a powerful technique for getting language models to perform complex tasks with no training updates.
We show that ICL approximates a Bayesian learner and develop a family of novel Bayesian scaling laws for ICL.
arXiv Detail & Related papers (2024-10-21T21:45:22Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Scaling Law with Learning Rate Annealing [4.121865876406014]
Cross-entropy loss curves of neural language models adhere to a scaling law with learning rate (LR) annealing over training steps.
Applying the scaling law with LR annealing and fitting only one or two training curves, we can accurately predict the loss at any given step across any learning rate (LRS)
arXiv Detail & Related papers (2024-08-20T17:30:48Z) - Performance Law of Large Language Models [58.32539851241063]
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources.
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources without extensive experiments.
arXiv Detail & Related papers (2024-08-19T11:09:12Z) - Faster and Lighter LLMs: A Survey on Current Challenges and Way Forward [29.81212051279456]
Recent advancements in model compression and system-level optimization methods aim to enhance LLM inference.
This survey offers an overview of these methods, emphasizing recent developments.
arXiv Detail & Related papers (2024-02-02T06:29:34Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
We introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach to fine-tune large language models (LLMs)
Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs.
arXiv Detail & Related papers (2023-10-13T07:38:52Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.