Scaling Laws for Downstream Task Performance in Machine Translation
- URL: http://arxiv.org/abs/2402.04177v2
- Date: Thu, 20 Feb 2025 23:26:44 GMT
- Title: Scaling Laws for Downstream Task Performance in Machine Translation
- Authors: Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, Sanmi Koyejo,
- Abstract summary: We study how the choice of the pretraining data and its size affect downstream performance (translation quality) as judged by metrics such as BLEU and COMET scores.<n>With sufficient alignment, both downstream cross-entropy and translation quality scores improve monotonically with more pretraining data.
- Score: 27.278023091494507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the pretraining data and its size affect downstream performance (translation quality) as judged by: downstream cross-entropy and translation quality metrics such as BLEU and COMET scores. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and translation quality scores improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream translation quality metrics with good accuracy using a log-law. However, there are cases where moderate misalignment causes the downstream translation scores to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these, we provide new practical insights for choosing appropriate pretraining data.
Related papers
- LLMs on the Line: Data Determines Loss-to-Loss Scaling Laws [21.053622641336744]
Loss-to-loss scaling laws relate losses across pretraining datasets and downstream tasks.
Our experiments reveal that the pretraining data and tokenizer determine the scaling trend.
arXiv Detail & Related papers (2025-02-17T18:45:25Z) - Bayesian scaling laws for in-context learning [72.17734205418502]
In-context learning (ICL) is a powerful technique for getting language models to perform complex tasks with no training updates.
We show that ICL approximates a Bayesian learner and develop a family of novel Bayesian scaling laws for ICL.
arXiv Detail & Related papers (2024-10-21T21:45:22Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - An Empirical Study of Scaling Laws for Transfer [0.0]
We present a limited empirical study of scaling laws for transfer learning in transformer models.
We examine a scaling law that incorporates a "transfer gap" term, indicating the effectiveness of pre-training on one distribution when optimizing for downstream performance on another distribution.
arXiv Detail & Related papers (2024-08-30T00:06:29Z) - Downstream bias mitigation is all you need [2.7824025230291003]
This paper studies the extent of biases absorbed by large language models (LLMs) during pre-training and task-specific behaviour after fine-tuning.
We find that pre-training does matter, but after the model has been pre-trained, even slight changes to co-occurrence rates in the fine-tuning dataset has a significant effect on the bias of the model.
arXiv Detail & Related papers (2024-08-01T14:52:04Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Temporal Scaling Law for Large Language Models [24.12384260752973]
We propose the novel concept of Temporal Scaling Law, studying how the test loss of an LLM evolves as the training steps scale up.
In contrast to modeling the test loss as a whole in a coarse-grained manner, we break it down and dive into the fine-grained test loss of each token position.
We derive the much more precise temporal scaling law by studying the temporal patterns of the parameters in the dynamic hyperbolic-law.
arXiv Detail & Related papers (2024-04-27T05:49:11Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - Inverse Scaling: When Bigger Isn't Better [80.42834197416444]
Large language models (LMs) show predictable improvements to overall loss with increased scale.
We present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale.
arXiv Detail & Related papers (2023-06-15T20:11:23Z) - Same Pre-training Loss, Better Downstream: Implicit Bias Matters for
Language Models [46.24479693469042]
This paper shows that 1) pre-training loss cannot fully explain downstream performance and 2) flatness of the model is well-correlated with downstream performance where pre-training loss is not.
arXiv Detail & Related papers (2022-10-25T17:45:36Z) - Data Scaling Laws in NMT: The Effect of Noise and Architecture [59.767899982937756]
We study the effect of varying the architecture and training data quality on the data scaling properties of Neural Machine Translation (NMT)
We find that the data scaling exponents are minimally impacted, suggesting that marginally worse architectures or training data can be compensated for by adding more data.
arXiv Detail & Related papers (2022-02-04T06:53:49Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
We propose a joint approach to regularize NMT models at both representation-level and gradient-level.
Our results demonstrate that our approach is highly effective in both reducing off-target translation occurrences and improving zero-shot translation performance.
arXiv Detail & Related papers (2021-09-10T10:52:21Z) - On the Transferability of Pre-trained Language Models: A Study from
Artificial Datasets [74.11825654535895]
Pre-training language models (LMs) on large-scale unlabeled text data makes the model much easier to achieve exceptional downstream performance.
We study what specific traits in the pre-training data, other than the semantics, make a pre-trained LM superior to their counterparts trained from scratch on downstream tasks.
arXiv Detail & Related papers (2021-09-08T10:39:57Z) - Scaling Laws for Transfer [0.5432984841650929]
We study scaling laws for transfer learning between distributions in an unsupervised, fine-tuning setting.
We find that the effective data transferred is described well in the low data regime by a power-law of parameter count and fine-tuning dataset size.
arXiv Detail & Related papers (2021-02-02T04:07:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.