What is "Typological Diversity" in NLP?
- URL: http://arxiv.org/abs/2402.04222v4
- Date: Wed, 02 Oct 2024 15:27:36 GMT
- Title: What is "Typological Diversity" in NLP?
- Authors: Esther Ploeger, Wessel Poelman, Miryam de Lhoneux, Johannes Bjerva,
- Abstract summary: We introduce metrics to approximate the diversity of language selection along several axes.
We show that skewed language selection can lead to overestimated multilingual performance.
- Score: 7.58293347591642
- License:
- Abstract: The NLP research community has devoted increased attention to languages beyond English, resulting in considerable improvements for multilingual NLP. However, these improvements only apply to a small subset of the world's languages. Aiming to extend this, an increasing number of papers aspires to enhance generalizable multilingual performance across languages. To this end, linguistic typology is commonly used to motivate language selection, on the basis that a broad typological sample ought to imply generalization across a broad range of languages. These selections are often described as being 'typologically diverse'. In this work, we systematically investigate NLP research that includes claims regarding 'typological diversity'. We find there are no set definitions or criteria for such claims. We introduce metrics to approximate the diversity of language selection along several axes and find that the results vary considerably across papers. Crucially, we show that skewed language selection can lead to overestimated multilingual performance. We recommend future work to include an operationalization of 'typological diversity' that empirically justifies the diversity of language samples.
Related papers
- A Principled Framework for Evaluating on Typologically Diverse Languages [6.670393338187622]
We present a language sampling framework for selecting highly typologically diverse languages.
We find that our systematic methods consistently retrieve more typologically diverse language selections than previous methods in NLP.
arXiv Detail & Related papers (2024-07-06T09:31:02Z) - What Do Dialect Speakers Want? A Survey of Attitudes Towards Language Technology for German Dialects [60.8361859783634]
We survey speakers of dialects and regional languages related to German.
We find that respondents are especially in favour of potential NLP tools that work with dialectal input.
arXiv Detail & Related papers (2024-02-19T09:15:28Z) - Universal and Independent: Multilingual Probing Framework for Exhaustive
Model Interpretation and Evaluation [0.04199844472131922]
We present and apply the GUI-assisted framework allowing us to easily probe a massive number of languages.
Most of the regularities revealed in the mBERT model are typical for the western-European languages.
Our framework can be integrated with the existing probing toolboxes, model cards, and leaderboards.
arXiv Detail & Related papers (2022-10-24T13:41:17Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
We study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications.
We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations.
arXiv Detail & Related papers (2020-05-02T04:34:37Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
We construct a recurrent neural network predictor based on byte embeddings and convolutional layers.
We show that some features from various linguistic types can be predicted reliably.
arXiv Detail & Related papers (2020-04-30T21:00:53Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z) - Evaluating Transformer-Based Multilingual Text Classification [55.53547556060537]
We argue that NLP tools perform unequally across languages with different syntactic and morphological structures.
We calculate word order and morphological similarity indices to aid our empirical study.
arXiv Detail & Related papers (2020-04-29T03:34:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.