FPGA Deployment of LFADS for Real-time Neuroscience Experiments
- URL: http://arxiv.org/abs/2402.04274v1
- Date: Fri, 2 Feb 2024 07:52:20 GMT
- Title: FPGA Deployment of LFADS for Real-time Neuroscience Experiments
- Authors: Xiaohan Liu, ChiJui Chen, YanLun Huang, LingChi Yang, Elham E Khoda,
Yihui Chen, Scott Hauck, Shih-Chieh Hsu, Bo-Cheng Lai
- Abstract summary: LFADS (Latent Factor Analysis via Dynamical Systems) is a deep learning method for inferring latent dynamics from high-dimensional neural spiking data recorded simultaneously in single trials.
We introduce an efficient implementation of the LFADS models onto Field Programmable Gate Arrays (FPGA).
Our implementation shows an inference latency of 41.97 $mu$s for processing the data in a single trial on a Xilinx U55C.
- Score: 2.1110034280282153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale recordings of neural activity are providing new opportunities to
study neural population dynamics. A powerful method for analyzing such
high-dimensional measurements is to deploy an algorithm to learn the
low-dimensional latent dynamics. LFADS (Latent Factor Analysis via Dynamical
Systems) is a deep learning method for inferring latent dynamics from
high-dimensional neural spiking data recorded simultaneously in single trials.
This method has shown a remarkable performance in modeling complex brain
signals with an average inference latency in milliseconds. As our capacity of
simultaneously recording many neurons is increasing exponentially, it is
becoming crucial to build capacity for deploying low-latency inference of the
computing algorithms. To improve the real-time processing ability of LFADS, we
introduce an efficient implementation of the LFADS models onto Field
Programmable Gate Arrays (FPGA). Our implementation shows an inference latency
of 41.97 $\mu$s for processing the data in a single trial on a Xilinx U55C.
Related papers
- TESS: A Scalable Temporally and Spatially Local Learning Rule for Spiking Neural Networks [6.805933498669221]
Training neural networks (SNNs) on resource-constrained devices remains challenging due to high computational and memory demands.
We introduce TESS, a temporally and spatially local learning rule for training SNNs.
Our approach addresses both temporal and spatial credit assignments by relying solely on locally available signals within each neuron.
arXiv Detail & Related papers (2025-02-03T21:23:15Z) - Channel-wise Parallelizable Spiking Neuron with Multiplication-free Dynamics and Large Temporal Receptive Fields [32.349167886062105]
Spiking Neural Networks (SNNs) are distinguished from Artificial Neural Networks (ANNs) for their sophisticated neuronal dynamics and sparse binary activations (spikes) inspired by the biological neural system.
Traditional neuron models use iterative step-by-step dynamics, resulting in serial computation and slow training speed of SNNs.
Recent parallelizable spiking neuron models have been proposed to fully utilize the massive parallel computing ability of graphics processing units to accelerate the training of SNNs.
arXiv Detail & Related papers (2025-01-24T13:44:08Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
computational inefficiency of spiking neural networks (SNNs) is primarily due to the sequential updates of membrane potential.
We propose Membrane Potential Estimation Parallel Spiking Neurons (MPE-PSN), a parallel computation method for spiking neurons.
Our approach exhibits promise for enhancing computational efficiency, particularly under conditions of elevated neuron density.
arXiv Detail & Related papers (2024-09-08T05:14:22Z) - Advancing Spatio-Temporal Processing in Spiking Neural Networks through Adaptation [6.233189707488025]
neural networks on neuromorphic hardware promise orders of less power consumption than their non-spiking counterparts.
Standard neuron model for spike-based computation on such systems has long been the integrate-and-fire (LIF) neuron.
The root of these so-called adaptive LIF neurons is not well understood.
arXiv Detail & Related papers (2024-08-14T12:49:58Z) - GRSN: Gated Recurrent Spiking Neurons for POMDPs and MARL [28.948871773551854]
Spiking neural networks (SNNs) are widely applied in various fields due to their energy-efficient and fast-inference capabilities.
In current spiking reinforcement learning (SRL) algorithms, the simulation results of multiple time steps can only correspond to a single-step decision in RL.
We propose a novel temporal alignment paradigm (TAP) that leverages the single-step update of spiking neurons to accumulate historical state information in RL.
arXiv Detail & Related papers (2024-04-24T02:20:50Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFields is a novel class of networks specifically designed to effectively represent complex temporal signals.
We conduct comprehensive analysis of the properties of ResFields and propose a matrix factorization technique to reduce the number of trainable parameters.
We demonstrate the practical utility of ResFields by showcasing its effectiveness in capturing dynamic 3D scenes from sparse RGBD cameras.
arXiv Detail & Related papers (2023-09-06T16:59:36Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Deep inference of latent dynamics with spatio-temporal super-resolution
using selective backpropagation through time [15.648009434801885]
Modern neural interfaces allow access to the activity of up to a million neurons within brain circuits.
bandwidth limits often create a trade-off between greater spatial sampling (more channels or pixels) and frequency of temporal sampling.
Here we demonstrate that it is possible to obtain super-resolution in neuronal time series by exploiting relationships among neurons.
arXiv Detail & Related papers (2021-10-29T20:18:29Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - A Supervised Learning Algorithm for Multilayer Spiking Neural Networks
Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design [2.6872737601772956]
Spiking neural networks (SNNs) are brain-inspired mathematical models with the ability to process information in the form of spikes.
We propose a novel supervised learning algorithm for SNNs based on temporal coding.
arXiv Detail & Related papers (2020-01-08T03:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.