Road Surface Defect Detection -- From Image-based to Non-image-based: A
Survey
- URL: http://arxiv.org/abs/2402.04297v1
- Date: Tue, 6 Feb 2024 15:42:38 GMT
- Title: Road Surface Defect Detection -- From Image-based to Non-image-based: A
Survey
- Authors: Jongmin Yu, Jiaqi Jiang, Sebastiano Fichera, Paolo Paoletti, Lisa
Layzell, Devansh Mehta, and Shan Luo
- Abstract summary: There has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods.
The predominant approach involves image-based methods, which analyse pixel intensities and surface textures to identify defects.
We review recently proposed non-image-based methods and discuss several challenges and open problems associated with these techniques.
- Score: 7.067243891342157
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ensuring traffic safety is crucial, which necessitates the detection and
prevention of road surface defects. As a result, there has been a growing
interest in the literature on the subject, leading to the development of
various road surface defect detection methods. The methods for detecting road
defects can be categorised in various ways depending on the input data types or
training methodologies. The predominant approach involves image-based methods,
which analyse pixel intensities and surface textures to identify defects.
Despite their popularity, image-based methods share the distinct limitation of
vulnerability to weather and lighting changes. To address this issue,
researchers have explored the use of additional sensors, such as laser scanners
or LiDARs, providing explicit depth information to enable the detection of
defects in terms of scale and volume. However, the exploration of data beyond
images has not been sufficiently investigated. In this survey paper, we provide
a comprehensive review of road surface defect detection studies, categorising
them based on input data types and methodologies used. Additionally, we review
recently proposed non-image-based methods and discuss several challenges and
open problems associated with these techniques.
Related papers
- RAD: A Comprehensive Dataset for Benchmarking the Robustness of Image Anomaly Detection [4.231702796492545]
This study introduces a Robust Anomaly Detection dataset with free views, uneven illuminations, and blurry collections.
RAD aims to identify foreign objects on working platforms as anomalies.
We assess and analyze 11 state-of-the-art unsupervised and zero-shot methods on RAD.
arXiv Detail & Related papers (2024-06-11T11:39:44Z) - Small and Dim Target Detection in IR Imagery: A Review [9.941925002794262]
This is the first review in the field of small and dim target detection in infrared imagery.
There are two main types of approaches: methodologies using several frames for detection, and single-frame-based detection techniques.
Our findings indicate that deep learning approaches perform better than traditional image processing-based approaches.
arXiv Detail & Related papers (2023-11-27T22:25:46Z) - On the Effectiveness of Image Manipulation Detection in the Age of
Social Media [9.227950734832447]
manipulation detection algorithms often rely on the manipulated regions being sufficiently'' different from the rest of the non-tampered regions in the image.
We present an in-depth analysis of deep learning-based and learning-free methods, assessing their performance on benchmark datasets.
We propose a novel deep learning-based pre-processing technique that accentuates the anomalies present in manipulated regions.
arXiv Detail & Related papers (2023-04-19T04:05:54Z) - Spatio-Temporal Context Modeling for Road Obstacle Detection [12.464149169670735]
A data-driven context-temporal model of the driving scene is constructed with the layouts of the training data.
Obstacles are detected via state-of-the-art object detection algorithms, and the results are combined with the generated scene.
arXiv Detail & Related papers (2023-01-19T07:06:35Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
We show that road obstacle detection techniques ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases.
We leverage this by computing a scale map encoding the apparent size of a hypothetical object at every image location.
We then leverage this perspective map to generate training data by injecting onto the road synthetic objects whose size corresponds to the perspective foreshortening.
arXiv Detail & Related papers (2022-10-04T17:48:42Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
Face-swap images and videos have attracted more and more malicious attackers to discredit some key figures.
Previous pixel-level artifacts based detection techniques always focus on some unclear patterns but ignore some available semantic clues.
We propose a biometric information based method to fully exploit the appearance and shape feature for face-swap detection of key figures.
arXiv Detail & Related papers (2021-04-28T09:35:48Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
In the data hiding task, each pixel of cover images should be treated differently since they have divergent tolerabilities.
We propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism.
Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets.
arXiv Detail & Related papers (2020-11-21T19:08:23Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
We show how the performance of forgery detectors depends on the presence of artefacts that the human eye can see.
We introduce a new benchmark dataset for face video forgery detection, of unprecedented quality.
arXiv Detail & Related papers (2020-05-20T21:17:43Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for Deep Learning applications.
We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches.
We highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
arXiv Detail & Related papers (2020-03-16T02:47:23Z) - Unsupervised Pixel-level Road Defect Detection via Adversarial
Image-to-Frequency Transform [8.644679871804872]
We propose an unsupervised approach to detecting road defects, using Adversarial Image-to-Frequency Transform (AIFT)
AIFT adopts the unsupervised manner and adversarial learning in deriving the defect detection model, so AIFT does not need annotations for road pavement defects.
arXiv Detail & Related papers (2020-01-30T04:50:00Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.