論文の概要: Training Language Models to Generate Text with Citations via Fine-grained Rewards
- arxiv url: http://arxiv.org/abs/2402.04315v3
- Date: Fri, 30 Aug 2024 18:24:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 19:43:36.900667
- Title: Training Language Models to Generate Text with Citations via Fine-grained Rewards
- Title(参考訳): きめ細かな逆流によるテキスト生成のための学習言語モデル
- Authors: Chengyu Huang, Zeqiu Wu, Yushi Hu, Wenya Wang,
- Abstract要約: 大型言語モデル(LLM)は幻覚を起こす傾向があり、信頼できる情報源への参照が欠如しているため、その応答は信頼性に欠けることが多い。
本研究では,LLMに高い支援力と関連性のある引用を生成するための,微粒な報酬を用いた効果的な学習フレームワークを提案する。
LLaMA-2-7Bでは、細粒度の報酬がGPT-3.5-turboを上回り、ベースラインの中で最高の性能を達成している。
- 参考スコア(独自算出の注目度): 19.176465185343417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While recent Large Language Models (LLMs) have proven useful in answering user queries, they are prone to hallucination, and their responses often lack credibility due to missing references to reliable sources. An intuitive solution to these issues would be to include in-text citations referring to external documents as evidence. While previous works have directly prompted LLMs to generate in-text citations, their performances are far from satisfactory, especially when it comes to smaller LLMs. In this work, we propose an effective training framework using fine-grained rewards to teach LLMs to generate highly supportive and relevant citations, while ensuring the correctness of their responses. We also conduct a systematic analysis of applying these fine-grained rewards to common LLM training strategies, demonstrating its advantage over conventional practices. We conduct extensive experiments on Question Answering (QA) datasets taken from the ALCE benchmark and validate the model's generalizability using EXPERTQA. On LLaMA-2-7B, the incorporation of fine-grained rewards achieves the best performance among the baselines, even surpassing that of GPT-3.5-turbo.
- Abstract(参考訳): 近年のLarge Language Models (LLM) はユーザクエリの応答に有用であることが証明されているが,幻覚の傾向があり,信頼性の低いソースへの参照が欠如しているため,その応答には信頼性が欠如していることが多い。
これらの問題に対する直感的な解決策は、証拠として外部文書を参照するテキスト内引用を含めることである。
以前の研究は、直接 LLM にインテキストの引用を生成するよう促してきたが、その性能は、特に小さな LLM の場合、満足には程遠い。
本研究では, LLMに対して, 応答の正確性を確保しつつ, 支援的かつ関連性の高い引用を生成するための, 微粒な報酬を用いた効果的な学習フレームワークを提案する。
また、これらの微粒な報酬を一般的なLLMトレーニング戦略に適用する体系的な分析を行い、従来の実践よりも有利であることを示す。
ALCEベンチマークから得られた質問応答(QA)データセットについて広範な実験を行い、EXPERTQAを用いてモデルの一般化性を検証する。
LLaMA-2-7Bでは、細粒度の報酬がGPT-3.5-turboを上回り、ベースラインの中で最高の性能を達成している。
関連論文リスト
- Learning Fine-Grained Grounded Citations for Attributed Large Language Models [44.79328335487421]
Frontは、大きな言語モデル(LLM)でFront-Grained Grounded Citationsを生成するためのトレーニングフレームワークである。
ALCEベンチマークの実験では、FRONTが優れた接地応答と高い支持的な励起を生成できることを示した。
論文 参考訳(メタデータ) (2024-08-08T16:28:22Z) - Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation [51.8188846284153]
RAGは大規模言語モデル(LLM)を強化するために広く採用されている。
分散テキスト生成(ATG)が注目され、RAGにおけるモデルの応答をサポートするための引用を提供する。
本稿では,ReClaim(Refer & Claim)と呼ばれる詳細なATG手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T20:47:47Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Effective Large Language Model Adaptation for Improved Grounding and Citation Generation [48.07830615309543]
本稿では,検索した文の応答を基底にして,引用を提供することにより,大規模言語モデル(LLM)の改善に焦点を当てる。
我々は、全体論的観点から基盤を改善する新しいフレームワーク AGREE を提案する。
我々のフレームワークは, LLMを調整し, その要求を自己評価し, 検索した文書に正確な引用を提供する。
論文 参考訳(メタデータ) (2023-11-16T03:22:25Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
検証可能な生成は、大きな言語モデル(LLM)がドキュメントをサポートするテキストを生成することを目的としている。
本稿では,LLatrieval (Large Language Model Verified Retrieval)を提案する。
実験により、LLatrievalは幅広いベースラインを著しく上回り、最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2023-11-14T01:38:02Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
ゼロショットと少数ショットのレコメンデーションタスクのために、純粋に大きな言語モデルを適応し、強化することに重点を置いています。
ゼロショット設定と少数ショット設定の両方でレコメンデーションタスクを行うRetrieval-enhanced Large Language Model (ReLLa)を提案する。
論文 参考訳(メタデータ) (2023-08-22T02:25:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。