LegalLens: Leveraging LLMs for Legal Violation Identification in
Unstructured Text
- URL: http://arxiv.org/abs/2402.04335v1
- Date: Tue, 6 Feb 2024 19:18:56 GMT
- Title: LegalLens: Leveraging LLMs for Legal Violation Identification in
Unstructured Text
- Authors: Dor Bernsohn, Gil Semo, Yaron Vazana, Gila Hayat, Ben Hagag, Joel
Niklaus, Rohit Saha, Kyryl Truskovskyi
- Abstract summary: We focus on two main tasks, the first for detecting legal violations within unstructured textual data, and the second for associating these violations with potentially affected individuals.
We constructed two datasets using Large Language Models (LLMs) which were validated by domain expert annotators.
Our results, with an F1-score of 62.69% (violation identification) and 81.02% (associating victims), show that our datasets and setups can be used for both tasks.
- Score: 2.5218432691157866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we focus on two main tasks, the first for detecting legal
violations within unstructured textual data, and the second for associating
these violations with potentially affected individuals. We constructed two
datasets using Large Language Models (LLMs) which were subsequently validated
by domain expert annotators. Both tasks were designed specifically for the
context of class-action cases. The experimental design incorporated fine-tuning
models from the BERT family and open-source LLMs, and conducting few-shot
experiments using closed-source LLMs. Our results, with an F1-score of 62.69\%
(violation identification) and 81.02\% (associating victims), show that our
datasets and setups can be used for both tasks. Finally, we publicly release
the datasets and the code used for the experiments in order to advance further
research in the area of legal natural language processing (NLP).
Related papers
- Enhancing Legal Case Retrieval via Scaling High-quality Synthetic Query-Candidate Pairs [67.54302101989542]
Legal case retrieval aims to provide similar cases as references for a given fact description.
Existing works mainly focus on case-to-case retrieval using lengthy queries.
Data scale is insufficient to satisfy the training requirements of existing data-hungry neural models.
arXiv Detail & Related papers (2024-10-09T06:26:39Z) - CopyLens: Dynamically Flagging Copyrighted Sub-Dataset Contributions to LLM Outputs [39.425944445393945]
We introduce CopyLens, a framework to analyze how copyrighted datasets may influence Large Language Models responses.
Experiments show that CopyLens improves efficiency and accuracy by 15.2% over our proposed baseline, 58.7% over prompt engineering methods, and 0.21 AUC over OOD detection baselines.
arXiv Detail & Related papers (2024-10-06T11:41:39Z) - Leveraging Open-Source Large Language Models for Native Language Identification [1.6267479602370543]
Native Language Identification (NLI) has applications in forensics, marketing, and second language acquisition.
This study explores the potential of using open-source generative large language models (LLMs) for NLI.
arXiv Detail & Related papers (2024-09-15T08:14:18Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - Beyond Traditional Benchmarks: Analyzing Behaviors of Open LLMs on Data-to-Text Generation [0.0]
We analyze the behaviors of open large language models (LLMs) on the task of data-to-text (D2T) generation.
We find that open LLMs can generate fluent and coherent texts in zero-shot settings from data in common formats collected with Quintd.
arXiv Detail & Related papers (2024-01-18T18:15:46Z) - On Inter-dataset Code Duplication and Data Leakage in Large Language Models [4.148857672591562]
This paper explores the phenomenon of inter-dataset code duplication and its impact on evaluating large language models (LLMs)
Our findings reveal a potential threat to the evaluation of LLMs across multiple SE tasks, stemming from the inter-dataset code duplication phenomenon.
We provide evidence that open-source models could be affected by inter-dataset duplication.
arXiv Detail & Related papers (2024-01-15T19:46:40Z) - LLM4Causal: Democratized Causal Tools for Everyone via Large Language Model [7.052058110182703]
Large Language Models (LLMs) have shown their success in language understanding and reasoning on general topics.
We explore the possibility of fine-tuning an open-sourced LLM into LLM4Causal, which can identify the causal task, execute a corresponding function, and interpret its numerical results based on users' queries and the provided dataset.
arXiv Detail & Related papers (2023-12-28T16:59:06Z) - Hint-enhanced In-Context Learning wakes Large Language Models up for knowledge-intensive tasks [54.153914606302486]
In-context learning (ICL) ability has emerged with the increasing scale of large language models (LLMs)
We propose a new paradigm called Hint-enhanced In-Context Learning (HICL) to explore the power of ICL in open-domain question answering.
arXiv Detail & Related papers (2023-11-03T14:39:20Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.