Adaptive Inference: Theoretical Limits and Unexplored Opportunities
- URL: http://arxiv.org/abs/2402.04359v1
- Date: Tue, 6 Feb 2024 19:49:23 GMT
- Title: Adaptive Inference: Theoretical Limits and Unexplored Opportunities
- Authors: Soheil Hor, Ying Qian, Mert Pilanci, Amin Arbabian
- Abstract summary: We provide new approximate and exact bounds for the achievable efficiency and performance gains.
We offer insights on improving achievable efficiency gains through the optimal selection and design of adaptive inference state spaces.
- Score: 43.19515571173486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces the first theoretical framework for quantifying the
efficiency and performance gain opportunity size of adaptive inference
algorithms. We provide new approximate and exact bounds for the achievable
efficiency and performance gains, supported by empirical evidence demonstrating
the potential for 10-100x efficiency improvements in both Computer Vision and
Natural Language Processing tasks without incurring any performance penalties.
Additionally, we offer insights on improving achievable efficiency gains
through the optimal selection and design of adaptive inference state spaces.
Related papers
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - Efficiency optimization of large-scale language models based on deep learning in natural language processing tasks [6.596361762662328]
Internal structure and operation mechanism of large-scale language models are analyzed theoretically.
We evaluate the contribution of adaptive optimization algorithms (such as AdamW), massively parallel computing techniques, and mixed precision training strategies.
arXiv Detail & Related papers (2024-05-20T00:10:00Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Constrained Bayesian Optimization with Adaptive Active Learning of
Unknown Constraints [10.705151736050967]
optimizing objectives under constraints is a common scenario in real-world applications such as scientific experimental design, design of medical therapies, and industrial process optimization.
We propose an efficient CBO framework that intersects the ROIs identified from each aspect to determine the general ROI.
We showcase the efficiency and robustness of our proposed CBO framework through empirical evidence and discuss the fundamental challenge of deriving practical regret bounds for CBO algorithms.
arXiv Detail & Related papers (2023-10-12T22:32:00Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Adaptive Inference through Early-Exit Networks: Design, Challenges and
Directions [80.78077900288868]
We decompose the design methodology of early-exit networks to its key components and survey the recent advances in each one of them.
We position early-exiting against other efficient inference solutions and provide our insights on the current challenges and most promising future directions for research in the field.
arXiv Detail & Related papers (2021-06-09T12:33:02Z) - Effective End-to-End Learning Framework for Economic Dispatch [3.034038412630808]
We adopt the notion of end-to-end machine learning and propose a task-specific learning criteria to conduct economic dispatch.
We provide both theoretical analysis and empirical insights to highlight the effectiveness and efficiency of the proposed learning framework.
arXiv Detail & Related papers (2020-02-22T08:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.