論文の概要: Fast Online Changepoint Detection
- arxiv url: http://arxiv.org/abs/2402.04433v1
- Date: Tue, 6 Feb 2024 22:12:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 17:57:49.695529
- Title: Fast Online Changepoint Detection
- Title(参考訳): 高速オンライン変更点検出
- Authors: Fabrizio Ghezzi, Eduardo Rossi, Lorenzo Trapani
- Abstract要約: 線形回帰モデルを用いてオンライン変化点検出について検討する。
回帰残差の CUSUM プロセスに基づく統計のクラスを提案する。
次に、異なる重み付け方式を用いて構築された複合統計学のクラスを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We study online changepoint detection in the context of a linear regression
model. We propose a class of heavily weighted statistics based on the CUSUM
process of the regression residuals, which are specifically designed to ensure
timely detection of breaks occurring early on during the monitoring horizon. We
subsequently propose a class of composite statistics, constructed using
different weighing schemes; the decision rule to mark a changepoint is based on
the largest statistic across the various weights, thus effectively working like
a veto-based voting mechanism, which ensures fast detection irrespective of the
location of the changepoint. Our theory is derived under a very general form of
weak dependence, thus being able to apply our tests to virtually all time
series encountered in economics, medicine, and other applied sciences. Monte
Carlo simulations show that our methodologies are able to control the
procedure-wise Type I Error, and have short detection delays in the presence of
breaks.
- Abstract(参考訳): 線形回帰モデルを用いてオンライン変化点検出について検討する。
観測地平線の早期に発生する破断のタイムリーな検出を可能にするために, 回帰残差のCUSUMプロセスに基づく重み付き統計クラスを提案する。
次に,異なる重み付けスキームを用いて構成された複合統計学のクラスを提案する。変更点をマークする決定規則は,様々な重みで最大の統計値に基づいており,変更点の位置に関係なく迅速な検出を可能にするvetoベースの投票機構として効果的に機能する。
我々の理論は、非常に一般的な弱い依存の形で導出され、経済学、医学、その他の応用科学で遭遇する全ての時系列にテストを適用することができる。
モンテカルロシミュレーションにより,本手法は手続き的にi型エラーを制御でき,ブレークの有無で検出遅延が短いことを示す。
関連論文リスト
- Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
逐次変化点検出のための状態空間モデル(AUCRSS)を用いたアダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・
SSMのオンライン推論のために部分的に観測可能なカルマンフィルタアルゴリズムを開発し、一般化された確率比テストに基づく変化点検出スキームを解析する。
論文 参考訳(メタデータ) (2024-03-30T02:32:53Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
テスト時間バッチ正規化(BN)や自己学習といった,一般的な適応手法では,2つの好ましくない欠陥が隠されていることがわかった。
まず、テスト時間BNにおける正規化統計は、現在受信されているテストサンプルに完全に影響され、その結果、不正確な推定結果が得られることを明らかにする。
第二に、テスト時間適応中にパラメータ更新が支配的なクラスに偏っていることを示す。
論文 参考訳(メタデータ) (2023-01-30T15:54:00Z) - Unsupervised Change Detection using DRE-CUSUM [14.73895038690252]
DRE-CUSUMは、時系列データの統計的変化を決定するために、教師なし密度比推定(DRE)に基づく手法である。
本稿では,統計的変化を確実に検出できることを示す理論的正当性および精度保証を示す。
我々は、既存の最先端の教師なしアルゴリズムよりも、合成データセットと実世界のデータセットの両方を用いて、DRE-CUSUMの優位性を実験的に示す。
論文 参考訳(メタデータ) (2022-01-27T17:25:42Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
実際には、デプロイされたモデルのパフォーマンスが大幅に低下しないという、良心的なシフトを無視することは理にかなっている。
我々は,警告を発射する有効な方法は,(a)良性な警告を無視しながら有害なシフトを検知し,(b)誤報率を増大させることなく,モデル性能の連続的なモニタリングを可能にすることを論じる。
論文 参考訳(メタデータ) (2021-10-12T17:21:41Z) - Detecting Rewards Deterioration in Episodic Reinforcement Learning [63.49923393311052]
多くのRLアプリケーションでは、トレーニングが終了すると、エージェント性能の劣化をできるだけ早く検出することが不可欠である。
我々は,各エピソードにおける報酬が独立でもなく,同一に分散した,マルコフでもない,エピソード的枠組みを考察する。
平均シフトは、時間信号の劣化(報酬など)に対応する方法で定義し、最適な統計的パワーでこの問題の試行を導出する。
論文 参考訳(メタデータ) (2020-10-22T12:45:55Z) - Sequential Changepoint Detection in Neural Networks with Checkpoints [11.763229353978321]
本稿では,オンライン変化点検出と同時モデル学習のためのフレームワークを提案する。
次々に一般化された確率比テストを行うことにより、経時的に変化点を検出する。
オンラインベイズ変化点検出と比較して性能が向上した。
論文 参考訳(メタデータ) (2020-10-06T21:49:54Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
変化点検出(CPD)は、時系列データにおける急激な特性変化を見つけることを目的としている。
近年のCDD法は、深層学習技術を用いる可能性を示したが、信号の自己相関統計学におけるより微妙な変化を識別する能力に欠けることが多い。
我々は、新しい損失関数を持つオートエンコーダに基づく手法を用い、使用済みオートエンコーダは、CDDに適した部分的な時間不変表現を学習する。
論文 参考訳(メタデータ) (2020-08-21T15:03:21Z) - Multinomial Sampling for Hierarchical Change-Point Detection [0.0]
本稿では,検出率を向上し,遅延を低減する多項サンプリング手法を提案する。
実験の結果, 基準法よりも優れた結果が得られ, また, 人間の行動研究を指向した事例も提示した。
論文 参考訳(メタデータ) (2020-07-24T09:18:17Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z) - High-dimensional, multiscale online changepoint detection [7.502070498889449]
ガウス的データストリームが平均的に変更されるような設定において,高次元のオンライン変更点検出のための新しい手法を提案する。
このアルゴリズムは、新しい観測におけるストレージ要件と最悪の計算複雑性の両方が、以前の観測数とは無関係であるという意味で、オンラインである。
Rパッケージ 'ocd' に実装した提案手法の有効性をシミュレーションにより検証し,その有効性を地震学データセット上で実証する。
論文 参考訳(メタデータ) (2020-03-07T21:54:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。