ScreenAI: A Vision-Language Model for UI and Infographics Understanding
- URL: http://arxiv.org/abs/2402.04615v3
- Date: Thu, 4 Jul 2024 07:08:15 GMT
- Title: ScreenAI: A Vision-Language Model for UI and Infographics Understanding
- Authors: Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Victor Cărbune, Jason Lin, Jindong Chen, Abhanshu Sharma,
- Abstract summary: We introduce ScreenAI, a vision-language model that specializes in UI and infographics understanding.
At the heart of this mixture is a novel screen annotation task in which the model has to identify the type and location of UI elements.
We use these text annotations to describe screens to Large Language Models and automatically generate question-answering (QA), UI navigation, and summarization training datasets at scale.
- Score: 4.914575630736291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Screen user interfaces (UIs) and infographics, sharing similar visual language and design principles, play important roles in human communication and human-machine interaction. We introduce ScreenAI, a vision-language model that specializes in UI and infographics understanding. Our model improves upon the PaLI architecture with the flexible patching strategy of pix2struct and is trained on a unique mixture of datasets. At the heart of this mixture is a novel screen annotation task in which the model has to identify the type and location of UI elements. We use these text annotations to describe screens to Large Language Models and automatically generate question-answering (QA), UI navigation, and summarization training datasets at scale. We run ablation studies to demonstrate the impact of these design choices. At only 5B parameters, ScreenAI achieves new state-of-the-artresults on UI- and infographics-based tasks (Multi-page DocVQA, WebSRC, MoTIF and Widget Captioning), and new best-in-class performance on others (Chart QA, DocVQA, and InfographicVQA) compared to models of similar size. Finally, we release three new datasets: one focused on the screen annotation task and two others focused on question answering.
Related papers
- ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity.
We develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations.
ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding.
arXiv Detail & Related papers (2024-11-26T14:29:47Z) - Tell Me What's Next: Textual Foresight for Generic UI Representations [65.10591722192609]
We propose Textual Foresight, a novel pretraining objective for learning UI screen representations.
Textual Foresight generates global text descriptions of future UI states given a current UI and local action taken.
We train with our newly constructed mobile app dataset, OpenApp, which results in the first public dataset for app UI representation learning.
arXiv Detail & Related papers (2024-06-12T02:43:19Z) - IMProv: Inpainting-based Multimodal Prompting for Computer Vision Tasks [124.90137528319273]
In this paper, we present IMProv, a generative model that is able to in-context learn visual tasks from multimodal prompts.
We train a masked generative transformer on a new dataset of figures from computer vision papers and their associated captions.
During inference time, we prompt the model with text and/or image task example(s) and have the model inpaint the corresponding output.
arXiv Detail & Related papers (2023-12-04T09:48:29Z) - MiniGPT-v2: large language model as a unified interface for
vision-language multi-task learning [65.60607895153692]
MiniGPT-v2 is a model that can be treated as a unified interface for better handling various vision-language tasks.
We propose using unique identifiers for different tasks when training the model.
Our results show that MiniGPT-v2 achieves strong performance on many visual question-answering and visual grounding benchmarks.
arXiv Detail & Related papers (2023-10-14T03:22:07Z) - ILuvUI: Instruction-tuned LangUage-Vision modeling of UIs from Machine
Conversations [13.939350184164017]
Multimodal Vision-Language Models (VLMs) enable powerful applications from their fused understanding of images and language.
We adapt a recipe for generating paired text-image training data for VLMs to the UI domain by combining existing pixel-based methods with a Large Language Model (LLM)
We generate a dataset of 335K conversational examples paired with UIs that cover Q&A, UI descriptions, and planning, and use it to fine-tune a conversational VLM for UI tasks.
arXiv Detail & Related papers (2023-10-07T16:32:34Z) - Pix2Struct: Screenshot Parsing as Pretraining for Visual Language
Understanding [58.70423899829642]
We present Pix2Struct, a pretrained image-to-text model for purely visual language understanding.
We show that a single pretrained model can achieve state-of-the-art results in six out of nine tasks across four domains.
arXiv Detail & Related papers (2022-10-07T06:42:06Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - ActionBert: Leveraging User Actions for Semantic Understanding of User
Interfaces [12.52699475631247]
We introduce a new pre-trained UI representation model called ActionBert.
Our methodology is designed to leverage visual, linguistic and domain-specific features in user interaction traces to pre-train generic feature representations of UIs and their components.
Experiments show that the proposed ActionBert model outperforms multi-modal baselines across all downstream tasks by up to 15.5%.
arXiv Detail & Related papers (2020-12-22T20:49:52Z) - Predicting Visual Importance Across Graphic Design Types [22.171824732227872]
This paper introduces a Unified Model of Saliency and Importance (UMSI)
UMSI learns to predict visual importance in input graphic designs, and saliency in natural images.
We also introduce Imp1k, a new dataset of designs annotated with importance information.
arXiv Detail & Related papers (2020-08-07T00:12:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.