論文の概要: InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient Context Memory
- arxiv url: http://arxiv.org/abs/2402.04617v2
- Date: Tue, 28 May 2024 12:05:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 03:28:21.418440
- Title: InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient Context Memory
- Title(参考訳): InfLLM: 効率的な文脈記憶を持つLLMのための学習不要な長期外挿法
- Authors: Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Maosong Sun,
- Abstract要約: 本稿では,トレーニング不要なメモリベースのInfLLMを提案する。
InfLLMは、リモートコンテキストを追加のメモリユニットに格納し、トークン関連ユニットを注目するために効率的なメカニズムを使用する。
シーケンス長が$1,024$Kにスケールしても、InfLLMは依然として、長距離依存関係を効果的にキャプチャする。
- 参考スコア(独自算出の注目度): 93.20588235940453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have emerged as a cornerstone in real-world applications with lengthy streaming inputs (e.g., LLM-driven agents). However, existing LLMs, pre-trained on sequences with a restricted maximum length, cannot process longer sequences due to the out-of-domain and distraction issues. Common solutions often involve continual pre-training on longer sequences, which will introduce expensive computational overhead and uncontrollable change in model capabilities. In this paper, we unveil the intrinsic capacity of LLMs for understanding extremely long sequences without any fine-tuning. To this end, we introduce a training-free memory-based method, InfLLM. Specifically, InfLLM stores distant contexts into additional memory units and employs an efficient mechanism to lookup token-relevant units for attention computation. Thereby, InfLLM allows LLMs to efficiently process long sequences with a limited context window and well capture long-distance dependencies. Without any training, InfLLM enables LLMs that are pre-trained on sequences consisting of a few thousand tokens to achieve comparable performance with competitive baselines that continually train these LLMs on long sequences. Even when the sequence length is scaled to $1,024$K, InfLLM still effectively captures long-distance dependencies. Our code can be found in \url{https://github.com/thunlp/InfLLM}.
- Abstract(参考訳): 大規模言語モデル(LLM)は、長いストリーミング入力を持つ現実世界のアプリケーション(例えば、LLM駆動エージェント)の基盤として登場した。
しかし、制限された最大長のシーケンスで事前訓練された既存のLLMでは、ドメイン外および乱れの問題により、長いシーケンスを処理できない。
一般的なソリューションは、長いシーケンスで連続的な事前トレーニングを伴い、高価な計算オーバーヘッドと制御不能なモデル機能の変化をもたらす。
本稿では,極長列を微調整せずに理解するためのLLMの本質的な能力を明らかにする。
そこで本研究では,トレーニング不要なメモリベースのInfLLMを提案する。
特に、InfLLMは、遠隔コンテキストを追加のメモリ単位に格納し、注意計算のためにトークン関連ユニットを検索する効率的なメカニズムを用いる。
これにより、InfLLMはLLMがコンテキストウィンドウに制限された長いシーケンスを効率的に処理し、長距離依存関係を適切にキャプチャできる。
トレーニングなしでは、InfLLMは数千のトークンからなるシーケンスで事前トレーニングされたLLMを、長いシーケンスでこれらのLLMを継続的にトレーニングする競合ベースラインで同等のパフォーマンスを達成することができる。
シーケンス長が$1,024$Kにスケールしても、InfLLMは依然として、長距離依存関係を効果的にキャプチャする。
我々のコードは \url{https://github.com/thunlp/InfLLM} にある。
関連論文リスト
- LongRecipe: Recipe for Efficient Long Context Generalization in Large Language Models [72.71150585370147]
LongRecipeは、大きな言語モデルのコンテキストウィンドウを拡張するための効率的なトレーニング戦略である。
トレーニング効率を維持しながら、長いシーケンス入力をシミュレートし、長距離依存に対するモデルの理解を大幅に改善する。
LongRecipeは、ターゲットのコンテキストウィンドウサイズの30%しか必要とせず、長いシーケンスを使うことができる。
論文 参考訳(メタデータ) (2024-08-31T17:19:30Z) - Efficient Solutions For An Intriguing Failure of LLMs: Long Context Window Does Not Mean LLMs Can Analyze Long Sequences Flawlessly [6.685692482347038]
大規模言語モデル(LLM)は、長い逐次入力の解釈と解析において顕著な能力を示した。
本稿では,長い入力シーケンスを扱う場合,LLMが短くなるという,驚くべき制限を明らかにする。
本稿では,LLMの性能を最大50%向上させるアドホックな手法を提案し,評価する。
論文 参考訳(メタデータ) (2024-08-03T21:31:34Z) - SirLLM: Streaming Infinite Retentive LLM [74.40196814292426]
大きな言語モデル(LLM)は任意の長さの入力を処理し、メモリの程度を維持する。
近年の取り組みでは、過度に長いテキスト入力の圧力を軽減するためにストリーミング入力が採用されている。
本稿では,SirLLM(Streaming Infinite Retentive LLM)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:37:03Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning [67.39585115936329]
LLMには、微調整なしで長いコンテキストを処理できる固有の能力がある、と我々は主張する。
バイレベルアテンション情報を構築することで,LLMのコンテキストウィンドウを拡張するためのSelfExtendを提案する。
複数のベンチマークで包括的な実験を行い、その結果、既存のLLMのコンテキストウィンドウ長を効果的に拡張できることが示されている。
論文 参考訳(メタデータ) (2024-01-02T18:30:51Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。