MEMORYLLM: Towards Self-Updatable Large Language Models
- URL: http://arxiv.org/abs/2402.04624v2
- Date: Sun, 26 May 2024 23:06:32 GMT
- Title: MEMORYLLM: Towards Self-Updatable Large Language Models
- Authors: Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng Li, Xian Li, Bing Yin, Jingbo Shang, Julian McAuley,
- Abstract summary: Existing Large Language Models (LLMs) usually remain static after deployment.
We introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool.
MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier.
- Score: 101.3777486749529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool within the latent space of the transformer. MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively incorporate new knowledge, as evidenced by its performance on model editing benchmarks. Meanwhile, the model exhibits long-term information retention capacity, which is validated through our custom-designed evaluations and long-context benchmarks. MEMORYLLM also shows operational integrity without any sign of performance degradation even after nearly a million memory updates. Our code and model are open-sourced at https://github.com/wangyu-ustc/MemoryLLM.
Related papers
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - Online Adaptation of Language Models with a Memory of Amortized Contexts [82.02369596879817]
Memory of Amortized Contexts (MAC) is an efficient and effective online adaptation framework for large language models.
We show how MAC can be combined with and improve the performance of popular alternatives such as retrieval augmented generations.
arXiv Detail & Related papers (2024-03-07T08:34:57Z) - CAMELoT: Towards Large Language Models with Training-Free Consolidated
Associative Memory [38.429707659685974]
Large Language Models (LLMs) struggle to handle long input sequences due to high memory and runtime costs.
We introduce an associative memory module which can be coupled to any pre-trained (frozen) attention-based LLM without re-training.
This architecture, which we call CAMELoT, demonstrates superior performance even with a tiny context window of 128 tokens.
arXiv Detail & Related papers (2024-02-21T01:00:17Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement.
We show that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work.
We propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel.
arXiv Detail & Related papers (2022-05-26T08:24:01Z) - Training Language Models with Memory Augmentation [28.4608705738799]
We present a novel training approach designed for training language models with memory augmentation.
Our approach uses a training objective that directly takes in-batch examples as accessible memory.
We demonstrate significant gains over previous memory-augmented approaches.
arXiv Detail & Related papers (2022-05-25T11:37:29Z) - Mention Memory: incorporating textual knowledge into Transformers
through entity mention attention [21.361822569279003]
We propose to integrate a semi-parametric representation of a large text corpus into a Transformer model as a source of factual knowledge.
The proposed model - TOME - is a Transformer that accesses the information through internal memory layers in which each entity mention in the input passage attends to the mention memory.
In experiments using a memory of 150 million Wikipedia mentions, TOME achieves strong performance on several open-domain knowledge-intensive tasks.
arXiv Detail & Related papers (2021-10-12T17:19:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.