Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning
- URL: http://arxiv.org/abs/2410.10132v1
- Date: Mon, 14 Oct 2024 03:50:17 GMT
- Title: Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning
- Authors: Hung Le, Kien Do, Dung Nguyen, Sunil Gupta, Svetha Venkatesh,
- Abstract summary: Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
- Score: 64.93848182403116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective decision-making in partially observable environments demands robust memory management. Despite their success in supervised learning, current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term. They fail to efficiently capture relevant past information, adapt flexibly to changing observations, and maintain stable updates over long episodes. We theoretically analyze the limitations of existing memory models within a unified framework and introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents. Our model dynamically adjusts memory by erasing no longer needed experiences and reinforcing crucial ones computationally efficiently. To this end, we leverage the Hadamard product for calibrating and updating memory, specifically designed to enhance memory capacity while mitigating numerical and learning challenges. Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks, such as meta-reinforcement learning, long-horizon credit assignment, and POPGym, demonstrating superior performance in handling long-term and evolving contexts.
Related papers
- Fine-Grained Gradient Restriction: A Simple Approach for Mitigating Catastrophic Forgetting [41.891312602770746]
Gradient Episodic Memory (GEM) achieves balance by utilizing a subset of past training samples to restrict the update direction of the model parameters.
We show that memory strength is effective mainly because it improves GEM's ability generalization and therefore leads to a more favorable trade-off.
arXiv Detail & Related papers (2024-10-01T17:03:56Z) - Adversarially Diversified Rehearsal Memory (ADRM): Mitigating Memory Overfitting Challenge in Continual Learning [0.0]
Continual learning focuses on learning non-stationary data distribution without forgetting previous knowledge.
Rehearsal-based approaches are commonly used to combat catastrophic forgetting.
We introduce the Adversarially Diversified Rehearsal Memory to address the memory overfitting challenge.
arXiv Detail & Related papers (2024-05-20T06:56:43Z) - MEMORYLLM: Towards Self-Updatable Large Language Models [101.3777486749529]
Existing Large Language Models (LLMs) usually remain static after deployment.
We introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool.
MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier.
arXiv Detail & Related papers (2024-02-07T07:14:11Z) - Think Before You Act: Decision Transformers with Working Memory [44.18926449252084]
Decision Transformer-based decision-making agents have shown the ability to generalize across multiple tasks.
We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training.
We propose a working memory module to store, blend, and retrieve information for different downstream tasks.
arXiv Detail & Related papers (2023-05-24T01:20:22Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
How to forget is a problem continual learning must address.
Our paper proposes a new saliency-augmented memory completion framework for continual learning.
arXiv Detail & Related papers (2022-12-26T18:06:39Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement.
We show that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work.
We propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel.
arXiv Detail & Related papers (2022-05-26T08:24:01Z) - Learning What to Memorize: Using Intrinsic Motivation to Form Useful
Memory in Partially Observable Reinforcement Learning [0.0]
In order to learn in an ambiguous environment, an agent has to keep previous perceptions in a memory.
In this study, we follow the idea of giving the control of the memory to the agent by allowing it to have memory-changing actions.
This learning mechanism is supported by an intrinsic motivation to memorize rare observations that can help the agent to disambiguate its state in the environment.
arXiv Detail & Related papers (2021-10-25T11:15:54Z) - Learning to Learn Variational Semantic Memory [132.39737669936125]
We introduce variational semantic memory into meta-learning to acquire long-term knowledge for few-shot learning.
The semantic memory is grown from scratch and gradually consolidated by absorbing information from tasks it experiences.
We formulate memory recall as the variational inference of a latent memory variable from addressed contents.
arXiv Detail & Related papers (2020-10-20T15:05:26Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.