Boundary-aware Contrastive Learning for Semi-supervised Nuclei Instance
Segmentation
- URL: http://arxiv.org/abs/2402.04756v1
- Date: Wed, 7 Feb 2024 11:16:34 GMT
- Title: Boundary-aware Contrastive Learning for Semi-supervised Nuclei Instance
Segmentation
- Authors: Ye Zhang, Ziyue Wang, Yifeng Wang, Hao Bian, Linghan Cai, Hengrui Li,
Lingbo Zhang, Yongbing Zhang
- Abstract summary: We propose a boundary-aware contrastive learning network to denoise the boundary noise in a semi-supervised nuclei segmentation task.
The model has two key designs: a low-resolution denoising (LRD) module and a cross-RoI contrastive learning (CRC) module.
We conduct extensive experiments to demonstrate the superiority of our proposed method over existing semi-supervised instance segmentation methods.
- Score: 16.902154398259537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised segmentation methods have demonstrated promising results in
natural scenarios, providing a solution to reduce dependency on manual
annotation. However, these methods face significant challenges when directly
applied to pathological images due to the subtle color differences between
nuclei and tissues, as well as the significant morphological variations among
nuclei. Consequently, the generated pseudo-labels often contain much noise,
especially at the nuclei boundaries. To address the above problem, this paper
proposes a boundary-aware contrastive learning network to denoise the boundary
noise in a semi-supervised nuclei segmentation task. The model has two key
designs: a low-resolution denoising (LRD) module and a cross-RoI contrastive
learning (CRC) module. The LRD improves the smoothness of the nuclei boundary
by pseudo-labels denoising, and the CRC enhances the discrimination between
foreground and background by boundary feature contrastive learning. We conduct
extensive experiments to demonstrate the superiority of our proposed method
over existing semi-supervised instance segmentation methods.
Related papers
- Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.
We present a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs.
We also present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction.
arXiv Detail & Related papers (2024-09-11T06:12:03Z) - CausalCellSegmenter: Causal Inference inspired Diversified Aggregation
Convolution for Pathology Image Segmentation [9.021612471640635]
Deep learning models have shown promising performance for cell nucleus segmentation in the field of pathology image analysis.
We propose a novel framework termed CausalCellSegmenter, which combines Causal Inference Module (CIM) with Diversified Aggregation Convolution (DAC) techniques.
arXiv Detail & Related papers (2024-03-10T03:04:13Z) - Transforming gradient-based techniques into interpretable methods [3.6763102409647526]
We introduce GAD (Gradient Artificial Distancing) as a supportive framework for gradient-based techniques.
Its primary objective is to accentuate influential regions by establishing distinctions between classes.
Empirical investigations involving occluded images have demonstrated that the identified regions through this methodology indeed play a pivotal role in facilitating class differentiation.
arXiv Detail & Related papers (2024-01-25T09:24:19Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
We propose DNMOT, an end-to-end trainable DeNoising Transformer for multiple object tracking.
Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture.
We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2023-09-09T04:40:01Z) - Enhancing Nucleus Segmentation with HARU-Net: A Hybrid Attention Based
Residual U-Blocks Network [9.718765096478371]
Current methods for nucleus segmentation rely on nuclear morphology or contour-based approaches.
We propose a dual-branch network using hybrid attention based residual U-blocks for nucleus instance segmentation.
Within the network, we propose a context fusion block (CF-block) that effectively extracts and merges contextual information from the network.
arXiv Detail & Related papers (2023-08-07T08:03:20Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - InsMix: Towards Realistic Generative Data Augmentation for Nuclei
Instance Segmentation [29.78647170035808]
We propose a realistic data augmentation method for nuclei segmentation, named InsMix, that follows a Copy-Paste-Smooth principle.
Specifically, we propose morphology constraints that enable the augmented images to acquire luxuriant information about nuclei.
To fully exploit the pixel redundancy of the background, we propose a background perturbation method, which randomly shuffles the background patches.
arXiv Detail & Related papers (2022-06-30T08:58:05Z) - Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei
Segmentation in Histopathology Images [65.47507533905188]
We propose a novel multitask learning network with a bending loss regularizer to separate overlapped nuclei accurately.
The newly proposed multitask learning architecture enhances the generalization by learning shared representation from three tasks.
The proposed bending loss defines high penalties to concave contour points with large curvatures, and applies small penalties to convex contour points with small curvatures.
arXiv Detail & Related papers (2021-09-30T17:29:44Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
We introduce a novel variant called Semantic Contrastive Learning (SCL)
It explores the characteristics of both conventional contrastive learning and deep clustering.
It can amplify the strengths of contrastive learning and deep clustering in a unified approach.
arXiv Detail & Related papers (2021-03-03T20:20:48Z) - Contrastive Rendering for Ultrasound Image Segmentation [59.23915581079123]
The lack of sharp boundaries in US images remains an inherent challenge for segmentation.
We propose a novel and effective framework to improve boundary estimation in US images.
Our proposed method outperforms state-of-the-art methods and has the potential to be used in clinical practice.
arXiv Detail & Related papers (2020-10-10T07:14:03Z) - Simultaneous Denoising and Dereverberation Using Deep Embedding Features [64.58693911070228]
We propose a joint training method for simultaneous speech denoising and dereverberation using deep embedding features.
At the denoising stage, the DC network is leveraged to extract noise-free deep embedding features.
At the dereverberation stage, instead of using the unsupervised K-means clustering algorithm, another neural network is utilized to estimate the anechoic speech.
arXiv Detail & Related papers (2020-04-06T06:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.