Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement
- URL: http://arxiv.org/abs/2409.07040v1
- Date: Wed, 11 Sep 2024 06:12:03 GMT
- Title: Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement
- Authors: Xianmin Chen, Peiliang Huang, Xiaoxu Feng, Dingwen Zhang, Longfei Han, Junwei Han,
- Abstract summary: Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.
We present a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs.
We also present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction.
- Score: 71.13353154514418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge. Many deep learning-based methods have been developed to address this issue and have shown promising results in recent years. However, single-stage methods, which attempt to unify the complex mapping across both domains, leading to limited denoising performance. In contrast, two-stage approaches typically decompose a raw image with color filter arrays (CFA) into a four-channel RGGB format before feeding it into a neural network. However, this strategy overlooks the critical role of demosaicing within the Image Signal Processing (ISP) pipeline, leading to color distortions under varying lighting conditions, especially in low-light scenarios. To address these issues, we design a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs. Furthermore, we present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction. By bridging demosaicing and denoising, better raw image enhancement is achieved. Experimental evaluations conducted on public datasets SID and MCR demonstrate that our proposed RAWMamba achieves state-of-the-art performance on cross-domain mapping.
Related papers
- A Learnable Color Correction Matrix for RAW Reconstruction [19.394856071610604]
We introduce a learnable color correction matrix (CCM) to approximate the complex inverse image signal processor (ISP)
Experimental results demonstrate that simulated RAW (simRAW) images generated by our method provide performance improvements equivalent to those produced by more complex inverse ISP methods.
arXiv Detail & Related papers (2024-09-04T07:46:42Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
We propose to utilize exposure bracketing photography to unify image restoration and enhancement tasks.
Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data.
In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
arXiv Detail & Related papers (2024-01-01T14:14:35Z) - Learning to See Low-Light Images via Feature Domain Adaptation [17.033219611079165]
We propose a single-stage network empowered by Feature Domain Adaptation (FDA) to decouple the denoising and color mapping tasks in raw LLIE.
FDA can explore the global and local correlations with fewer line buffers.
Our method achieves state-of-the-art performance with fewer computing costs.
arXiv Detail & Related papers (2023-12-11T03:38:26Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination.
Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution.
We propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task.
Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RG
arXiv Detail & Related papers (2023-11-20T09:55:06Z) - ITRE: Low-light Image Enhancement Based on Illumination Transmission
Ratio Estimation [10.26197196078661]
Noise, artifacts, and over-exposure are significant challenges in the field of low-light image enhancement.
We propose a novel Retinex-based method, called ITRE, which suppresses noise and artifacts from the origin of the model.
Extensive experiments demonstrate the effectiveness of our approach in suppressing noise, preventing artifacts, and controlling over-exposure level simultaneously.
arXiv Detail & Related papers (2023-10-08T13:22:20Z) - SJ-HD^2R: Selective Joint High Dynamic Range and Denoising Imaging for
Dynamic Scenes [17.867412310873732]
Ghosting artifacts, motion blur, and low fidelity in highlight are the main challenges in High Dynamic Range (LDR) imaging.
We propose a joint HDR and denoising pipeline, containing two sub-networks.
We create the first joint HDR and denoising benchmark dataset.
arXiv Detail & Related papers (2022-06-20T07:49:56Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Unsupervised PET Reconstruction from a Bayesian Perspective [12.512270202705404]
DeepRED is a typical representation that combines DIP and regularization by denoising (RED)
In this article, we leverage DeepRED from a Bayesian perspective to reconstruct PET images from a single corrupted sinogram without any supervised or auxiliary information.
arXiv Detail & Related papers (2021-10-29T06:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.