論文の概要: Shape-biased Texture Agnostic Representations for Improved Textureless and Metallic Object Detection and 6D Pose Estimation
- arxiv url: http://arxiv.org/abs/2402.04878v2
- Date: Tue, 23 Jul 2024 14:18:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 23:03:22.948676
- Title: Shape-biased Texture Agnostic Representations for Improved Textureless and Metallic Object Detection and 6D Pose Estimation
- Title(参考訳): 形状バイアス型テクスチャー非依存表現によるテクスチャーレス・メタルオブジェクト検出と6次元ポース推定
- Authors: Peter Hönig, Stefan Thalhammer, Jean-Baptiste Weibel, Matthias Hirschmanner, Markus Vincze,
- Abstract要約: テクスチャレスおよびメタリックオブジェクトは、CNNの視覚的手がかりやテクスチャバイアスが少ないため、依然として重要な課題である。
形状バイアスをCNNトレーニングに誘導する手法を提案する。
この手法は、シームレスなデータレンダリングと、一貫性のあるテクスチャ面のないトレーニングデータの結果を可能にする。
- 参考スコア(独自算出の注目度): 9.227450931458907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in machine learning have greatly benefited object detection and 6D pose estimation. However, textureless and metallic objects still pose a significant challenge due to few visual cues and the texture bias of CNNs. To address his issue, we propose a strategy for inducing a shape bias to CNN training. In particular, by randomizing textures applied to object surfaces during data rendering, we create training data without consistent textural cues. This methodology allows for seamless integration into existing data rendering engines, and results in negligible computational overhead for data rendering and network training. Our findings demonstrate that the shape bias we induce via randomized texturing, improves over existing approaches using style transfer. We evaluate with three detectors and two pose estimators. For the most recent object detector and for pose estimation in general, estimation accuracy improves for textureless and metallic objects. Additionally we show that our approach increases the pose estimation accuracy in the presence of image noise and strong illumination changes. Code and datasets are publicly available at github.com/hoenigpeter/randomized_texturing.
- Abstract(参考訳): 機械学習の最近の進歩は、オブジェクト検出と6Dポーズ推定に大きな恩恵を受けている。
しかし、テクスチャレスやメタリックな物体は、視覚的手がかりがほとんどなく、CNNのテクスチャバイアスが小さいため、依然として大きな課題となっている。
そこで本研究では,CNNトレーニングに形状バイアスを誘導する手法を提案する。
特に、データレンダリング中にオブジェクト表面に適用されるテクスチャをランダムにすることで、一貫したテクスチャの手がかりのないトレーニングデータを生成する。
この手法により、既存のデータレンダリングエンジンにシームレスに統合することができ、結果としてデータレンダリングとネットワークトレーニングの計算オーバーヘッドが無視できる。
本研究は, ランダム化テクスチャによる形状バイアスが, スタイル伝達を用いた既存手法よりも改善されていることを示す。
3つの検出器と2つのポーズ推定器で評価した。
最新のオブジェクト検出器と一般のポーズ推定では、テクスチャレスおよび金属オブジェクトに対する推定精度が向上する。
また,画像ノイズの有無によるポーズ推定精度が向上し,強い照明効果が得られた。
コードとデータセットはgithub.com/hoenigpeter/randomized_texturingで公開されている。
関連論文リスト
- Inverse Neural Rendering for Explainable Multi-Object Tracking [35.072142773300655]
我々はRGBカメラから3Dマルチオブジェクト追跡をEmphInverse Rendering (IR)問題として再放送した。
我々は、本質的に形状と外観特性を歪ませる生成潜在空間上の画像損失を最適化する。
本手法の一般化とスケーリング能力は,合成データのみから生成前を学習することで検証する。
論文 参考訳(メタデータ) (2024-04-18T17:37:53Z) - SplatPose & Detect: Pose-Agnostic 3D Anomaly Detection [18.796625355398252]
最先端のアルゴリズムは、ますます困難な設定やデータモダリティの欠陥を検出することができる。
本稿では,3次元ガウススプラッティングに基づくフレームワークSplatPoseを提案する。
競合手法に比べてトレーニングデータが少ない場合でも,トレーニング速度と推論速度,検出性能の両面で最先端の成果が得られている。
論文 参考訳(メタデータ) (2024-04-10T08:48:09Z) - What You See Is What You Detect: Towards better Object Densification in
3D detection [2.3436632098950456]
広く使われているフル形状のコンプリートアプローチは、特に遠く離れた物や歩行者のような小さな物に対して、エラーのアップバウンドを高くする。
従来の手法が生成した予測ポイントの11.3%しか必要としない可視部分補完法を提案する。
密表現を復元するために,目に見える前景オブジェクトに関連付けられた点集合を拡大するメッシュデフォーメーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2023-10-27T01:46:37Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
単一のRGB画像から固い物体の6-DoFのポーズを推定することは、非常に難しい課題である。
近年の研究では、高密度対応型解の大きな可能性を示している。
そこで本研究では,CheckerPoseというポーズ推定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-29T17:30:53Z) - BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown
Objects [89.2314092102403]
モノクロRGBDビデオシーケンスから未知物体の6-DoF追跡をリアルタイムに行う手法を提案する。
視覚的テクスチャがほとんど欠如している場合でも,任意の剛体オブジェクトに対して有効である。
論文 参考訳(メタデータ) (2023-03-24T17:13:49Z) - TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose
Estimation [55.94900327396771]
合成データから6次元オブジェクトポーズ推定のためのニューラルネットワークによるテクスチャ学習を提案する。
実画像からオブジェクトの現実的なテクスチャを予測することを学ぶ。
画素完全合成データからポーズ推定を学習する。
論文 参考訳(メタデータ) (2022-12-25T13:36:32Z) - NeRF-Pose: A First-Reconstruct-Then-Regress Approach for
Weakly-supervised 6D Object Pose Estimation [44.42449011619408]
トレーニング中に2次元オブジェクトセグメンテーションと既知の相対カメラポーズしか必要としないNeRF-Poseという,弱教師付き再構築型パイプラインを提案する。
予測応答から安定かつ正確なポーズを推定するために、NeRF対応RAN+SACアルゴリズムを用いる。
LineMod-Occlusion 実験の結果,提案手法は6次元ポーズ推定法と比較して最先端の精度を持つことがわかった。
論文 参考訳(メタデータ) (2022-03-09T15:28:02Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
有望な解決策は、CADオブジェクトモデルで構成される合成データセットをよりよく利用して、実際のデータセットでの学習を促進することである。
最近の3次元事前学習の研究は、合成物体から他の実世界の応用へ学習した伝達特性が失敗することを示している。
本研究では,この目的を達成するためにRandomRoomsという新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:56:12Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
注釈付きデータが乏しい場合、堅牢なオブジェクト検出器を訓練することは困難です。
この問題に対処する既存のアプローチには、ラベル付きデータからラベル付きデータを補間する半教師付き学習が含まれる。
オブジェクト検出のためのオフラインデータ拡張手法を導入し、新しいビューでトレーニングデータを意味的に補間する。
論文 参考訳(メタデータ) (2021-03-04T06:31:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。