A Survey on Domain Generalization for Medical Image Analysis
- URL: http://arxiv.org/abs/2402.05035v2
- Date: Tue, 13 Feb 2024 16:43:19 GMT
- Title: A Survey on Domain Generalization for Medical Image Analysis
- Authors: Ziwei Niu and Shuyi Ouyang and Shiao Xie and Yen-wei Chen and Lanfen
Lin
- Abstract summary: Domain Generalization for MedIA aims to address the domain shift challenge by generalizing effectively and performing robustly across unknown data distributions.
We provide a formal definition of domain shift and domain generalization in medical field, and discuss several related settings.
We summarize the recent methods from three viewpoints: data manipulation level, feature representation level, and model training level, and present some algorithms in detail.
- Score: 9.410880477358942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical Image Analysis (MedIA) has emerged as a crucial tool in
computer-aided diagnosis systems, particularly with the advancement of deep
learning (DL) in recent years. However, well-trained deep models often
experience significant performance degradation when deployed in different
medical sites, modalities, and sequences, known as a domain shift issue. In
light of this, Domain Generalization (DG) for MedIA aims to address the domain
shift challenge by generalizing effectively and performing robustly across
unknown data distributions. This paper presents the a comprehensive review of
substantial developments in this area. First, we provide a formal definition of
domain shift and domain generalization in medical field, and discuss several
related settings. Subsequently, we summarize the recent methods from three
viewpoints: data manipulation level, feature representation level, and model
training level, and present some algorithms in detail for each viewpoints.
Furthermore, we introduce the commonly used datasets. Finally, we summarize
existing literature and present some potential research topics for the future.
For this survey, we also created a GitHub project by collecting the supporting
resources, at the link: https://github.com/Ziwei-Niu/DG_for_MedIA
Related papers
- A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis [48.84443450990355]
Deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexcepted situations.
We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images.
Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language.
arXiv Detail & Related papers (2024-05-23T17:55:02Z) - Domain Generalization for Medical Image Analysis: A Survey [13.34575578242635]
This paper comprehensively reviews domain generalization studies specifically tailored for MedIA.
We categorize domain generalization methods into data-level, feature-level, model-level, and analysis-level methods.
We show how those methods can be used in various stages of the MedIA workflow with DL equipped from data acquisition to model prediction and analysis.
arXiv Detail & Related papers (2023-10-05T09:31:58Z) - DGM-DR: Domain Generalization with Mutual Information Regularized
Diabetic Retinopathy Classification [40.35834579068518]
Domain shift between training and testing data presents a significant challenge for training general deep learning models.
We introduce a DG method that re-establishes the model objective function as a pretrained model to the medical imaging field.
Our proposed method consistently outperforms the previous state-of-the-art by a margin of 5.25% in average accuracy and a lower standard deviation.
arXiv Detail & Related papers (2023-09-18T11:17:13Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - Domain Generalization: A Survey [146.68420112164577]
Domain generalization (DG) aims to achieve OOD generalization by only using source domain data for model learning.
For the first time, a comprehensive literature review is provided to summarize the ten-year development in DG.
arXiv Detail & Related papers (2021-03-03T16:12:22Z) - Generalizing to Unseen Domains: A Survey on Domain Generalization [59.16754307820612]
Domain generalization deals with a challenging setting where one or several different but related domain(s) are given.
The goal is to learn a model that can generalize to an unseen test domain.
This paper presents the first review for recent advances in domain generalization.
arXiv Detail & Related papers (2021-03-02T06:04:11Z) - Domain Adaptation for Medical Image Analysis: A Survey [28.365579324731247]
Machine learning techniques used in medical image analysis usually suffer from the domain shift problem caused by different distributions between source/reference data and target data.
As a promising solution, domain adaptation has attracted considerable attention in recent years.
This survey will enable researchers to gain a better understanding of the current status, challenges.
arXiv Detail & Related papers (2021-02-18T17:49:08Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.