Domain Generalization for Medical Image Analysis: A Survey
- URL: http://arxiv.org/abs/2310.08598v2
- Date: Thu, 15 Feb 2024 05:52:25 GMT
- Title: Domain Generalization for Medical Image Analysis: A Survey
- Authors: Jee Seok Yoon, Kwanseok Oh, Yooseung Shin, Maciej A. Mazurowski,
Heung-Il Suk
- Abstract summary: This paper comprehensively reviews domain generalization studies specifically tailored for MedIA.
We categorize domain generalization methods into data-level, feature-level, model-level, and analysis-level methods.
We show how those methods can be used in various stages of the MedIA workflow with DL equipped from data acquisition to model prediction and analysis.
- Score: 13.34575578242635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image analysis (MedIA) has become an essential tool in medicine and
healthcare, aiding in disease diagnosis, prognosis, and treatment planning, and
recent successes in deep learning (DL) have made significant contributions to
its advances. However, deploying DL models for MedIA in real-world situations
remains challenging due to their failure to generalize across the
distributional gap between training and testing samples - a problem known as
domain shift. Researchers have dedicated their efforts to developing various DL
methods to adapt and perform robustly on unknown and out-of-distribution data
distributions. This paper comprehensively reviews domain generalization studies
specifically tailored for MedIA. We provide a holistic view of how domain
generalization techniques interact within the broader MedIA system, going
beyond methodologies to consider the operational implications on the entire
MedIA workflow. Specifically, we categorize domain generalization methods into
data-level, feature-level, model-level, and analysis-level methods. We show how
those methods can be used in various stages of the MedIA workflow with DL
equipped from data acquisition to model prediction and analysis. Furthermore,
we critically analyze the strengths and weaknesses of various methods,
unveiling future research opportunities.
Related papers
- Navigating Distribution Shifts in Medical Image Analysis: A Survey [23.012651270865707]
This paper systematically reviews approaches that apply deep learning techniques to MedIA systems affected by distribution shifts.
We categorize the existing body of work into Joint Training, Federated Learning, Fine-tuning, and Domain Generalization.
By delving deeper into these topics, we highlight potential pathways for future research.
arXiv Detail & Related papers (2024-11-05T08:01:16Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Out-of-distribution Detection in Medical Image Analysis: A survey [12.778646136644399]
Computer-aided diagnostics has benefited from the development of deep learning-based computer vision techniques.
Traditional supervised deep learning methods assume that the test sample is drawn from the identical distribution as the training data.
It is possible to encounter out-of-distribution samples in real-world clinical scenarios, which may cause silent failure in deep learning-based medical image analysis tasks.
arXiv Detail & Related papers (2024-04-28T18:51:32Z) - A Survey on Domain Generalization for Medical Image Analysis [9.410880477358942]
Domain Generalization for MedIA aims to address the domain shift challenge by generalizing effectively and performing robustly across unknown data distributions.
We provide a formal definition of domain shift and domain generalization in medical field, and discuss several related settings.
We summarize the recent methods from three viewpoints: data manipulation level, feature representation level, and model training level, and present some algorithms in detail.
arXiv Detail & Related papers (2024-02-07T17:08:27Z) - DGM-DR: Domain Generalization with Mutual Information Regularized
Diabetic Retinopathy Classification [40.35834579068518]
Domain shift between training and testing data presents a significant challenge for training general deep learning models.
We introduce a DG method that re-establishes the model objective function as a pretrained model to the medical imaging field.
Our proposed method consistently outperforms the previous state-of-the-art by a margin of 5.25% in average accuracy and a lower standard deviation.
arXiv Detail & Related papers (2023-09-18T11:17:13Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Domain Generalization: A Survey [146.68420112164577]
Domain generalization (DG) aims to achieve OOD generalization by only using source domain data for model learning.
For the first time, a comprehensive literature review is provided to summarize the ten-year development in DG.
arXiv Detail & Related papers (2021-03-03T16:12:22Z) - Domain Adaptation for Medical Image Analysis: A Survey [28.365579324731247]
Machine learning techniques used in medical image analysis usually suffer from the domain shift problem caused by different distributions between source/reference data and target data.
As a promising solution, domain adaptation has attracted considerable attention in recent years.
This survey will enable researchers to gain a better understanding of the current status, challenges.
arXiv Detail & Related papers (2021-02-18T17:49:08Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.