Efficient Multi-Resolution Fusion for Remote Sensing Data with Label
Uncertainty
- URL: http://arxiv.org/abs/2402.05045v1
- Date: Wed, 7 Feb 2024 17:34:32 GMT
- Title: Efficient Multi-Resolution Fusion for Remote Sensing Data with Label
Uncertainty
- Authors: Hersh Vakharia and Xiaoxiao Du
- Abstract summary: This paper presents a new method for fusing multi-modal and multi-resolution remote sensor data without requiring pixel-level training labels.
We propose a new method based on binary fuzzy measures, which reduces the search space and significantly improves the efficiency of the MIMRF framework.
- Score: 0.7832189413179361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal sensor data fusion takes advantage of complementary or
reinforcing information from each sensor and can boost overall performance in
applications such as scene classification and target detection. This paper
presents a new method for fusing multi-modal and multi-resolution remote sensor
data without requiring pixel-level training labels, which can be difficult to
obtain. Previously, we developed a Multiple Instance Multi-Resolution Fusion
(MIMRF) framework that addresses label uncertainty for fusion, but it can be
slow to train due to the large search space for the fuzzy measures used to
integrate sensor data sources. We propose a new method based on binary fuzzy
measures, which reduces the search space and significantly improves the
efficiency of the MIMRF framework. We present experimental results on synthetic
data and a real-world remote sensing detection task and show that the proposed
MIMRF-BFM algorithm can effectively and efficiently perform multi-resolution
fusion given remote sensing data with uncertainty.
Related papers
- RemoteDet-Mamba: A Hybrid Mamba-CNN Network for Multi-modal Object Detection in Remote Sensing Images [13.98477009749389]
We propose a multimodal remote sensing network that employs a quad-directional selective scanning fusion strategy called RemoteDet-Mamba.
RemoteDet-Mamba simultaneously facilitates the learning of single-modal local features and the integration of patch-level global features.
Experimental results on the DroneVehicle dataset demonstrate the effectiveness of RemoteDet-Mamba.
arXiv Detail & Related papers (2024-10-17T13:20:20Z) - Guided Masked Self-Distillation Modeling for Distributed Multimedia Sensor Event Analysis [27.780058825326012]
We propose Guided Masked sELf-Distillation modeling (Guided-MELD) for inter-sensor relationship modeling.
Guided-MELD is expected to enable the system to effectively distill the fragmented or redundant target event information.
arXiv Detail & Related papers (2024-04-12T06:23:48Z) - Fus-MAE: A cross-attention-based data fusion approach for Masked
Autoencoders in remote sensing [5.990692497580643]
Fus-MAE is a self-supervised learning framework based on masked autoencoders.
Our empirical findings demonstrate that Fus-MAE can effectively compete with contrastive learning strategies tailored for SAR-optical data fusion.
arXiv Detail & Related papers (2024-01-05T11:36:21Z) - Log-Likelihood Score Level Fusion for Improved Cross-Sensor Smartphone
Periocular Recognition [52.15994166413364]
We employ fusion of several comparators to improve periocular performance when images from different smartphones are compared.
We use a probabilistic fusion framework based on linear logistic regression, in which fused scores tend to be log-likelihood ratios.
Our framework also provides an elegant and simple solution to handle signals from different devices, since same-sensor and cross-sensor score distributions are aligned and mapped to a common probabilistic domain.
arXiv Detail & Related papers (2023-11-02T13:43:44Z) - Multi-Modal 3D Object Detection by Box Matching [109.43430123791684]
We propose a novel Fusion network by Box Matching (FBMNet) for multi-modal 3D detection.
With the learned assignments between 3D and 2D object proposals, the fusion for detection can be effectively performed by combing their ROI features.
arXiv Detail & Related papers (2023-05-12T18:08:51Z) - Multimodal Industrial Anomaly Detection via Hybrid Fusion [59.16333340582885]
We propose a novel multimodal anomaly detection method with hybrid fusion scheme.
Our model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTecD-3 AD dataset.
arXiv Detail & Related papers (2023-03-01T15:48:27Z) - Learning Online Multi-Sensor Depth Fusion [100.84519175539378]
SenFuNet is a depth fusion approach that learns sensor-specific noise and outlier statistics.
We conduct experiments with various sensor combinations on the real-world CoRBS and Scene3D datasets.
arXiv Detail & Related papers (2022-04-07T10:45:32Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - GEM: Glare or Gloom, I Can Still See You -- End-to-End Multimodal Object
Detector [11.161639542268015]
We propose sensor-aware multi-modal fusion strategies for 2D object detection in harsh-lighting conditions.
Our network learns to estimate the measurement reliability of each sensor modality in the form of scalar weights and masks.
We show that the proposed strategies out-perform the existing state-of-the-art methods on the FLIR-Thermal dataset.
arXiv Detail & Related papers (2021-02-24T14:56:37Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
We propose SelectFusion, an end-to-end selective sensor fusion module.
During prediction, the network is able to assess the reliability of the latent features from different sensor modalities.
We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets.
arXiv Detail & Related papers (2019-12-30T20:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.