Guided Masked Self-Distillation Modeling for Distributed Multimedia Sensor Event Analysis
- URL: http://arxiv.org/abs/2404.08264v1
- Date: Fri, 12 Apr 2024 06:23:48 GMT
- Title: Guided Masked Self-Distillation Modeling for Distributed Multimedia Sensor Event Analysis
- Authors: Masahiro Yasuda, Noboru Harada, Yasunori Ohishi, Shoichiro Saito, Akira Nakayama, Nobutaka Ono,
- Abstract summary: We propose Guided Masked sELf-Distillation modeling (Guided-MELD) for inter-sensor relationship modeling.
Guided-MELD is expected to enable the system to effectively distill the fragmented or redundant target event information.
- Score: 27.780058825326012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Observations with distributed sensors are essential in analyzing a series of human and machine activities (referred to as 'events' in this paper) in complex and extensive real-world environments. This is because the information obtained from a single sensor is often missing or fragmented in such an environment; observations from multiple locations and modalities should be integrated to analyze events comprehensively. However, a learning method has yet to be established to extract joint representations that effectively combine such distributed observations. Therefore, we propose Guided Masked sELf-Distillation modeling (Guided-MELD) for inter-sensor relationship modeling. The basic idea of Guided-MELD is to learn to supplement the information from the masked sensor with information from other sensors needed to detect the event. Guided-MELD is expected to enable the system to effectively distill the fragmented or redundant target event information obtained by the sensors without being overly dependent on any specific sensors. To validate the effectiveness of the proposed method in novel tasks of distributed multimedia sensor event analysis, we recorded two new datasets that fit the problem setting: MM-Store and MM-Office. These datasets consist of human activities in a convenience store and an office, recorded using distributed cameras and microphones. Experimental results on these datasets show that the proposed Guided-MELD improves event tagging and detection performance and outperforms conventional inter-sensor relationship modeling methods. Furthermore, the proposed method performed robustly even when sensors were reduced.
Related papers
- MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
We introduce a new benchmark, the Multi-Sensor SIDD dataset, which is the first raw-domain dataset designed to evaluate the sensor transferability of denoising models.
We propose a sensor consistency training framework that enables denoising models to learn the sensor-invariant features.
arXiv Detail & Related papers (2024-11-18T13:32:59Z) - Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation [5.143097874851516]
We study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI)
We demonstrate that these methods effectively increase the robustness of model predictions to missing sensors.
We observe that ensemble multi-sensor models are the most robust to the lack of sensors.
arXiv Detail & Related papers (2024-07-22T09:58:29Z) - Efficient Multi-Resolution Fusion for Remote Sensing Data with Label
Uncertainty [0.7832189413179361]
This paper presents a new method for fusing multi-modal and multi-resolution remote sensor data without requiring pixel-level training labels.
We propose a new method based on binary fuzzy measures, which reduces the search space and significantly improves the efficiency of the MIMRF framework.
arXiv Detail & Related papers (2024-02-07T17:34:32Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition [3.2319909486685354]
A key problem holding up progress in wearable sensor-based human activity recognition is the unavailability of diverse and labeled training data.
We propose an unsupervised statistical feature-guided diffusion model specifically optimized for wearable sensor-based human activity recognition.
By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data.
arXiv Detail & Related papers (2023-05-30T15:12:59Z) - SensiX++: Bringing MLOPs and Multi-tenant Model Serving to Sensory Edge
Devices [69.1412199244903]
We present a multi-tenant runtime for adaptive model execution with integrated MLOps on edge devices, e.g., a camera, a microphone, or IoT sensors.
S SensiX++ operates on two fundamental principles - highly modular componentisation to externalise data operations with clear abstractions and document-centric manifestation for system-wide orchestration.
We report on the overall throughput and quantified benefits of various automation components of SensiX++ and demonstrate its efficacy to significantly reduce operational complexity and lower the effort to deploy, upgrade, reconfigure and serve embedded models on edge devices.
arXiv Detail & Related papers (2021-09-08T22:06:16Z) - On the Role of Sensor Fusion for Object Detection in Future Vehicular
Networks [25.838878314196375]
We evaluate how using a combination of different sensors affects the detection of the environment in which the vehicles move and operate.
The final objective is to identify the optimal setup that would minimize the amount of data to be distributed over the channel.
arXiv Detail & Related papers (2021-04-23T18:58:37Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
We propose SelectFusion, an end-to-end selective sensor fusion module.
During prediction, the network is able to assess the reliability of the latent features from different sensor modalities.
We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets.
arXiv Detail & Related papers (2019-12-30T20:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.