論文の概要: A Closer Look at the Limitations of Instruction Tuning
- arxiv url: http://arxiv.org/abs/2402.05119v4
- Date: Tue, 28 May 2024 01:55:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 03:28:21.405482
- Title: A Closer Look at the Limitations of Instruction Tuning
- Title(参考訳): インストラクション・チューニングの限界について
- Authors: Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Ramaneswaran S, Deepali Aneja, Zeyu Jin, Ramani Duraiswami, Dinesh Manocha,
- Abstract要約: インストラクションチューニング(IT)は,大規模言語モデル(LLM)における知識やスキルの向上に失敗することを示す。
また、一般的なIT改善手法は、シンプルなLoRA微調整モデルよりも性能改善につながるものではないことも示している。
この結果から,事前学習した知識のみから生成した応答は,オープンソースデータセット上でITから新たな知識を学習するモデルによって,一貫した応答性能が向上することが判明した。
- 参考スコア(独自算出の注目度): 52.587607091917214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instruction Tuning (IT), the process of training large language models (LLMs) using instruction-response pairs, has emerged as the predominant method for transforming base pre-trained LLMs into open-domain conversational agents. While IT has achieved notable success and widespread adoption, its limitations and shortcomings remain underexplored. In this paper, through rigorous experiments and an in-depth analysis of the changes LLMs undergo through IT, we reveal various limitations of IT. In particular, we show that (1) IT fails to enhance knowledge or skills in LLMs. LoRA fine-tuning is limited to learning response initiation and style tokens, and full-parameter fine-tuning leads to knowledge degradation. (2) Copying response patterns from IT datasets derived from knowledgeable sources leads to a decline in response quality. (3) Full-parameter fine-tuning increases hallucination by inaccurately borrowing tokens from conceptually similar instances in the IT dataset for generating responses. (4) Popular methods to improve IT do not lead to performance improvements over a simple LoRA fine-tuned model. Our findings reveal that responses generated solely from pre-trained knowledge consistently outperform responses by models that learn any form of new knowledge from IT on open-source datasets. We hope the insights and challenges revealed in this paper inspire future work in related directions.
- Abstract(参考訳): 命令応答ペアを用いた大規模言語モデル(LLM)の訓練プロセスであるインストラクションチューニング(IT)が,ベースとなる事前学習されたLLMをオープンドメインの会話エージェントに変換する主要な方法として登場した。
ITは目覚ましい成功を収め、広く採用されているが、その限界と欠点は未解決のままである。
本稿では、厳密な実験と、LLMがITを通して行っている変化の詳細な分析を通して、ITの様々な限界を明らかにする。
特に,1)LLMにおける知識や技能の向上に失敗する。
LoRAファインチューニングは学習応答開始とスタイルトークンに限られており、フルパラメータのファインチューニングは知識の劣化につながる。
2)知識ソースから派生したITデータセットからの応答パターンのコピーは,応答品質の低下につながる。
(3)全パラメータの微調整は,ITデータセット内の概念的に類似したインスタンスからトークンを不正確な借用によって幻覚を増大させ,応答を生成する。
(4) IT 改善のための一般的な手法は,シンプルな LoRA 微調整モデルよりも性能改善につながるものではない。
この結果から,事前学習した知識のみから生成した応答は,オープンソースデータセット上でITから新たな知識を学習するモデルによって,一貫した応答性能が向上することが判明した。
この論文で明らかになった洞察と課題が、今後の研究を関連する方向に促すことを願っています。
関連論文リスト
- Rephrase and Contrast: Fine-Tuning Language Models for Enhanced Understanding of Communication and Computer Networks [13.829525575305206]
本稿では,効率的な微調整フレームワークであるRephrase and Contrast(RaC)フレームワークについて紹介する。
RaCは質問の修正と対照的な分析を取り入れることでLLMの理解と批判的思考能力を高める。
本稿では,RaC微調整のためのデータセットを効率的に構築するために,高品質な質問応答対を生成するためのGPT支援データマイニング法を開発した。
論文 参考訳(メタデータ) (2024-09-21T16:04:43Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - Supportiveness-based Knowledge Rewriting for Retrieval-augmented Language Modeling [65.72918416258219]
支援性に基づく知識書き換え(SKR)は、LLM生成に本質的に最適化された堅牢でプラガブルな知識書き換えである。
知識支援に基づき、まず、リライターモデルのためのトレーニングデータキュレーション戦略を設計する。
次に、生成したリライトを最適な支持度に調整するために、直接選好最適化(DPO)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-06-12T11:52:35Z) - Injecting New Knowledge into Large Language Models via Supervised Fine-Tuning [13.371405067535814]
本稿では,Large Language Models(LLMs)における知識注入手法としてのスーパーバイザードファインタニング(SFT)の有効性について検討する。
さまざまなデータセット生成戦略 – トークンベースとファクトベースのスケーリング – を比較して,モデルが新たな情報を学ぶためのトレーニングデータを生成します。
その結果、ドメイン外知識に関連するQ&Aタスクのパフォーマンスが大幅に向上した。
論文 参考訳(メタデータ) (2024-03-30T01:56:07Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - Fine-Tuning or Retrieval? Comparing Knowledge Injection in LLMs [0.5461938536945721]
大規模言語モデル(LLM)は、事前訓練された重みの中に大量の事実情報をカプセル化する。
この知識は本質的に限られたものであり、トレーニングデータの特徴に大きく依存している。
教師なし微調整と検索拡張生成の2つの一般的なアプローチを比較した。
論文 参考訳(メタデータ) (2023-12-10T16:52:00Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
本稿では,インストラクションチューニング(IT)の急速な発展分野における研究成果について調査する。
本稿では、指定しない場合を除き、命令チューニング(IT)は教師付き微調整(SFT)と等価である。
論文 参考訳(メタデータ) (2023-08-21T15:35:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。