Numerically efficient unitary evolution for Hamiltonians beyond
nearest-neighbors
- URL: http://arxiv.org/abs/2402.05198v1
- Date: Wed, 7 Feb 2024 19:08:01 GMT
- Title: Numerically efficient unitary evolution for Hamiltonians beyond
nearest-neighbors
- Authors: Alberto Giuseppe Catalano
- Abstract summary: Matrix product states (MPSs) and matrix product operators (MPOs) are fundamental tools in the study of quantum many-body systems.
We propose a novel approach for the direct construction of compact MPOs tailored specifically for the exponential of spin Hamiltonians.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matrix product states (MPSs) and matrix product operators (MPOs) are
fundamental tools in the study of quantum many-body systems, particularly in
the context of tensor network methods such as Time-Evolving Block Decimation
(TEBD). However, constructing compact MPO representations for Hamiltonians with
interactions beyond nearest-neighbors, such as those arising in AMO systems or
in systems with ring geometry, remains a challenge. In this paper, we propose a
novel approach for the direct construction of compact MPOs tailored
specifically for the exponential of spin Hamiltonians. This approach allows for
a more efficient time evolution, using TEBD, of spin systems with interactions
beyond nearest-neighbors, such as long-range spin-chains, periodic systems and
more complex cluster model, with interactions involving more than two spins.
Related papers
- Platonic dynamical decoupling sequences for qudits [0.0]
We use a generalization of the Majorana representation for Hamiltonians to develop a simple framework that establishes the decoupling properties of each Platonic sequence.
These sequences are universal in their ability to cancel any type of interaction with the environment for single qudits with up to 6 levels.
They are capable of decoupling up to 5-body interactions in an ensemble of interacting qubits with only global pulses.
arXiv Detail & Related papers (2024-09-08T04:52:12Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Coarse-Graining Hamiltonian Systems Using WSINDy [0.0]
We show that WSINDy can successfully identify a reduced Hamiltonian system in the presence of large intrinsics.
WSINDy naturally preserves the Hamiltonian structure by restricting to a trial basis of Hamiltonian vector fields.
We also provide a contribution to averaging theory by proving that first-order averaging at the level of vector fields preserves Hamiltonian structure in nearly-periodic Hamiltonian systems.
arXiv Detail & Related papers (2023-10-09T17:20:04Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Topological and dynamical features of periodically driven spin ladders [0.0]
We study periodically driven spin ladders as clean quasi-one-dimensional systems with spin-spin interaction in the rung direction.
We find that such systems display subharmonic magnetization dynamics reminiscent to that of discrete time crystals (DTCs) at finite system sizes.
Special emphasis is placed on how the coupling in the rung direction of the ladder prevents degeneracy from occurring between states differing by a single spin excitation.
arXiv Detail & Related papers (2020-12-07T04:12:59Z) - Dynamically Evolving Bond-Dimensions within the one-site
Time-Dependent-Variational-Principle method for Matrix Product States:
Towards efficient simulation of non-equilibrium open quantum dynamics [0.0]
We show that an MPS can restructure itself as the complexity of the dynamics grows across time and space.
This naturally leads to more efficient simulations, oviates the need for multiple convergence runs, and, as we demonstrate, is ideally suited to the typical, finite-temperature 'impurity' problems.
arXiv Detail & Related papers (2020-07-27T13:07:05Z) - Sub-system quantum dynamics using coupled cluster downfolding techniques [0.0]
We discuss extending the sub-system embedding sub-algebra coupled cluster (SESCC) formalism and the double unitary coupled cluster (DUCC) Ansatz to the time domain.
Using these formalisms, it is possible to calculate the energy of the entire system as an eigenvalue of downfolded/effective Hamiltonian in the active space.
It can also be shown that downfolded Hamiltonians integrate out Fermionic degrees of freedom that do not correspond to the physics encapsulated by the active space.
arXiv Detail & Related papers (2020-03-21T03:11:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.