Out-of-time-order correlator computation based on discrete truncated Wigner approximation
- URL: http://arxiv.org/abs/2501.14221v2
- Date: Wed, 30 Apr 2025 11:23:26 GMT
- Title: Out-of-time-order correlator computation based on discrete truncated Wigner approximation
- Authors: Tatsuhiko Shirai, Takashi Mori,
- Abstract summary: We propose a method based on the discrete truncated Wigner approximation (DTWA) for computing out-of-time-order correlators.<n>This work provides and demonstrates a new technique to study scrambling dynamics in long-range interacting quantum spin systems.
- Score: 4.604003661048267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method based on the discrete truncated Wigner approximation (DTWA) for computing out-of-time-order correlators. This method is applied to long-range interacting quantum spin systems where the interactions decay as a power law with distance. As a demonstration, we use a squared commutator of local operators and its higher-order extensions that describe quantum information scrambling under Hamilton dynamics. Our results reveal that the DTWA method accurately reproduces the exact dynamics of the average spreading of quantum information (i.e., the squared commutator) across all time regimes in strongly long-range interacting systems. We also identify limitations in the DTWA method when capturing dynamics in weakly long-range interacting systems and the fastest spreading of quantum information. Then we apply the DTWA method to investigate the system-size dependence of the scrambling time in strongly long-range interacting systems. We reveal that the scaling behavior of the scrambling time for large system sizes qualitatively changes depending on the interaction range. This work provides and demonstrates a new technique to study scrambling dynamics in long-range interacting quantum spin systems
Related papers
- Multiple Quantum Many-Body Clustering Probed by Dynamical Decoupling [0.0]
manipulation of quantum information in large systems requires precise control of quantum systems that are out-of-equilibrium.
We demonstrate that the system response during a prethermal period, subject to Floquet control, can be utilized to probe the multiple quantum evolution of dense and highly connected spin systems.
arXiv Detail & Related papers (2025-04-21T15:46:05Z) - Multi-Timescale Quantum Averaging Theory for Driven Quantum Systems [0.0]
We present a multi-timescale Quantum Averaging Theory (QAT) for modeling periodically and almost-periodically driven quantum systems.
By integrating the Magnus expansion with the method of averaging on multiple scales, QAT captures the effects of both far-detuned and near-resonant interactions on system dynamics.
arXiv Detail & Related papers (2025-03-12T19:00:24Z) - Time-dependent Neural Galerkin Method for Quantum Dynamics [42.81677042059531]
We introduce a classical computational method for quantum dynamics that relies on a global-in-time variational principle.<n>We showcase the method's effectiveness simulating global quantum quenches in the paradigmatic Transverse-Field Ising model in both 1D and 2D.<n>Overall, the method presented here shows competitive performance compared to state-of-the-art time-dependent variational approaches.
arXiv Detail & Related papers (2024-12-16T13:48:54Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation [41.94295877935867]
We introduce a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations.
We use time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations.
The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems.
arXiv Detail & Related papers (2024-03-12T09:37:22Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Stabilization of Discrete Time-Crystaline Response on a Superconducting Quantum Computer by increasing the Interaction Range [0.0]
We present the outcomes of a digital quantum simulation where we overcome the limitations of the qubit connectivity in NISQ devices.
We demonstrate how to implement couplings among physically disconnected qubits at the cost of increasing the circuit depth.
arXiv Detail & Related papers (2023-05-23T18:00:12Z) - Onset of scrambling as a dynamical transition in tunable-range quantum
circuits [0.0]
We identify a dynamical transition marking the onset of scrambling in quantum circuits with different levels of long-range connectivity.
We show that as a function of the interaction range for circuits of different structures, the tripartite mutual information exhibits a scaling collapse.
In addition to systems with conventional power-law interactions, we identify the same phenomenon in deterministic, sparse circuits.
arXiv Detail & Related papers (2023-04-19T17:37:10Z) - Exact Quantum Dynamics, Shortcuts to Adiabaticity, and Quantum Quenches
in Strongly-Correlated Many-Body Systems: The Time-Dependent Jastrow Ansatz [3.0616044531734192]
We introduce a generalization of the Jastrow ansatz for time-dependent wavefunctions.
It provides an efficient and exact description of the time-evolution of a variety of systems exhibiting strong correlations.
arXiv Detail & Related papers (2022-10-26T18:00:03Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - A variational quantum eigensolver for dynamic correlation functions [0.9176056742068814]
We show how the calculation of zero-temperature dynamic correlation functions can be recast into a modified VQE algorithm.
This allows for important physical expectation values describing the dynamics of the system to be directly converged on the frequency axis.
We believe the approach shows potential for the extraction of frequency dynamics of correlated systems on near-term quantum processors.
arXiv Detail & Related papers (2021-05-04T18:52:45Z) - Scaling of temporal entanglement in proximity to integrability [0.0]
We analytically compute the exact IM for a family of integrable Floquet models.
We show that the IM exhibits area-law temporal entanglement scaling for all parameter values.
Near criticality, a non-trivial scaling behavior of temporal entanglement is found.
arXiv Detail & Related papers (2021-04-15T17:16:57Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.