Graph convolutional network as a fast statistical emulator for numerical ice sheet modeling
- URL: http://arxiv.org/abs/2402.05291v2
- Date: Wed, 20 Nov 2024 19:46:37 GMT
- Title: Graph convolutional network as a fast statistical emulator for numerical ice sheet modeling
- Authors: Maryam Rahnemoonfar, Younghyun Koo,
- Abstract summary: We use a graph convolutional network (GCN) to replicate the adapted mesh structures of the Ice-sheet and Sea-level System Model (ISSM)
When applied to transient simulations of the Pine Island Glacier (PIG), Antarctica, the GCN successfully reproduces ice thickness and velocity with a correlation coefficient of approximately 0.997.
- Score: 0.0
- License:
- Abstract: The Ice-sheet and Sea-level System Model (ISSM) provides numerical solutions for ice sheet dynamics using finite element and fine mesh adaption. However, considering ISSM is compatible only with central processing units (CPUs), it has limitations in economizing computational time to explore the linkage between climate forcings and ice dynamics. Although several deep learning emulators using graphic processing units (GPUs) have been proposed to accelerate ice sheet modeling, most of them rely on convolutional neural networks (CNNs) designed for regular grids. Since they are not appropriate for the irregular meshes of ISSM, we use a graph convolutional network (GCN) to replicate the adapted mesh structures of the ISSM. When applied to transient simulations of the Pine Island Glacier (PIG), Antarctica, the GCN successfully reproduces ice thickness and velocity with a correlation coefficient of approximately 0.997, outperforming non-graph models, including fully convolutional network (FCN) and multi-layer perceptron (MLP). Compared to the fixed-resolution approach of the FCN, the flexible-resolution structure of the GCN accurately captures detailed ice dynamics in fast-ice regions. By leveraging 60-100 times faster computational time of the GPU-based GCN emulator, we efficiently examine the impacts of basal melting rates on the ice sheet dynamics in the PIG.
Related papers
- Graph Neural Network as Computationally Efficient Emulator of Ice-sheet and Sea-level System Model (ISSM) [0.0]
We design a graph convolutional network (GCN) as a fast emulator for the Ice-sheet and Sea-level System Model (ISSM)
GCN shows 34 times faster computational speed than the CPU-based ISSM modeling.
arXiv Detail & Related papers (2024-06-26T16:13:11Z) - Graph Neural Networks for Emulation of Finite-Element Ice Dynamics in Greenland and Antarctic Ice Sheets [0.0]
equivariant graph convolutional network (EGCN) is an emulator for the ice sheet dynamics modeling.
EGCN reproduces ice thickness and velocity changes in the Helheim Glacier, Greenland, and Pine Island Glacier, Antarctica, with 260 times and 44 times faster computation time, respectively.
arXiv Detail & Related papers (2024-06-26T15:18:49Z) - Machine Learning Parameterization of the Multi-scale Kain-Fritsch (MSKF)
Convection Scheme [6.912451798457824]
Warm-sector heavy rainfall often occurs along the coast of South China.
The turbulent eddies in the atmospheric boundary layer are only partially resolved and parameterized to some extent in the gray zone.
In recent years, there has been an increasing application of machine learning (ML) models to various domains of atmospheric sciences.
arXiv Detail & Related papers (2023-11-07T01:47:16Z) - Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media [0.0]
Data-driven surrogate modeling provides inexpensive alternatives to high-fidelity numerical simulators.
CNNs are powerful in approximating partial differential equation solutions, but it remains challenging for CNNs to handle irregular and unstructured simulation meshes.
We construct surrogate models based on Graph Convolutional Networks (GCNs) to approximate the spatial-temporal solutions of multi-phase flow and transport processes in porous media.
arXiv Detail & Related papers (2023-07-10T09:59:35Z) - Graph Neural Networks for Temperature-Dependent Activity Coefficient
Prediction of Solutes in Ionic Liquids [58.720142291102135]
We present a GNN to predict temperature-dependent infinite dilution ACs of solutes in ILs.
We train the GNN on a database including more than 40,000 AC values and compare it to a state-of-the-art MCM.
The GNN and MCM achieve similar high prediction performance, with the GNN additionally enabling high-quality predictions for ACs of solutions that contain ILs and solutes not considered during training.
arXiv Detail & Related papers (2022-06-23T15:27:29Z) - Space-Time Graph Neural Networks [104.55175325870195]
We introduce space-time graph neural network (ST-GNN) to jointly process the underlying space-time topology of time-varying network data.
Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs.
arXiv Detail & Related papers (2021-10-06T16:08:44Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - LIAF-Net: Leaky Integrate and Analog Fire Network for Lightweight and
Efficient Spatiotemporal Information Processing [16.446511505488633]
Deep network LIAF-Net is built on LIF-SNN for efficienttemporal processing.
As atemporal layer, LIAF can also be used with traditional artificial neural network (ANN) layers jointly.
arXiv Detail & Related papers (2020-11-12T03:04:21Z) - Temporal Attention-Augmented Graph Convolutional Network for Efficient
Skeleton-Based Human Action Recognition [97.14064057840089]
Graphal networks (GCNs) have been very successful in modeling non-Euclidean data structures.
Most GCN-based action recognition methods use deep feed-forward networks with high computational complexity to process all skeletons in an action.
We propose a temporal attention module (TAM) for increasing the efficiency in skeleton-based action recognition.
arXiv Detail & Related papers (2020-10-23T08:01:55Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.