Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media
- URL: http://arxiv.org/abs/2307.04449v2
- Date: Mon, 15 Apr 2024 12:24:07 GMT
- Title: Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media
- Authors: Jiamin Jiang, Bo Guo,
- Abstract summary: Data-driven surrogate modeling provides inexpensive alternatives to high-fidelity numerical simulators.
CNNs are powerful in approximating partial differential equation solutions, but it remains challenging for CNNs to handle irregular and unstructured simulation meshes.
We construct surrogate models based on Graph Convolutional Networks (GCNs) to approximate the spatial-temporal solutions of multi-phase flow and transport processes in porous media.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Numerical simulation of multi-phase fluid dynamics in porous media is critical for many energy and environmental applications in Earth's subsurface. Data-driven surrogate modeling provides computationally inexpensive alternatives to high-fidelity numerical simulators. While the commonly used convolutional neural networks (CNNs) are powerful in approximating partial differential equation solutions, it remains challenging for CNNs to handle irregular and unstructured simulation meshes. However, simulation models for Earth's subsurface often involve unstructured meshes with complex mesh geometries, which limits the application of CNNs. To address this challenge, we construct surrogate models based on Graph Convolutional Networks (GCNs) to approximate the spatial-temporal solutions of multi-phase flow and transport processes in porous media. We propose a new GCN architecture suited to the hyperbolic character of the coupled PDE system, to better capture transport dynamics. Results of 2D heterogeneous test cases show that our surrogates predict the evolutions of pressure and saturation states with high accuracy, and the predicted rollouts remain stable for multiple timesteps. Moreover, the GCN-based models generalize well to irregular domain geometries and unstructured meshes that are unseen in the training dataset.
Related papers
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)
We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.
PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
We introduce MultiScaleGNN, a novel multi-scale graph neural network model for learning to infer unsteady continuum mechanics.
We demonstrate this method on advection problems and incompressible fluid dynamics, both fundamental phenomena in oceanic and atmospheric processes.
Simulations obtained with MultiScaleGNN are between two and four orders of magnitude faster than those on which it was trained.
arXiv Detail & Related papers (2022-05-05T13:33:03Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
We describe a gradient-based deep neural network (GDNN) constrained by the physics related to multiphase flow in porous media.
We demonstrate that GDNN can effectively predict the nonlinear patterns of subsurface responses.
arXiv Detail & Related papers (2021-04-30T02:14:00Z) - Transfer Learning on Multi-Fidelity Data [0.0]
Neural networks (NNs) are often used as surrogates or emulators of partial differential equations (PDEs) that describe the dynamics of complex systems.
We rely on multi-fidelity simulations to reduce the cost of data generation for subsequent training of a deep convolutional NN (CNN) using transfer learning.
Our numerical experiments demonstrate that a mixture of a comparatively large number of low-fidelity data and smaller numbers of high- and low-fidelity data provides an optimal balance of computational speed-up and prediction accuracy.
arXiv Detail & Related papers (2021-04-29T00:06:19Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.