論文の概要: Scrapping The Web For Early Wildfire Detection
- arxiv url: http://arxiv.org/abs/2402.05349v1
- Date: Thu, 8 Feb 2024 02:01:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-09 16:42:29.149100
- Title: Scrapping The Web For Early Wildfire Detection
- Title(参考訳): webをスクレイピングして野火を早期発見する
- Authors: Mateo Lostanlen and Felix Veith and Cristian Buc and Valentin Barriere
- Abstract要約: Pyroはウェブスクレイピングベースのデータセットで、カメラネットワークからの山火事のビデオで構成されている。
データセットは、データの品質と多様性を改善し、最終的なデータを1万枚まで削減する戦略に基づいてフィルタリングされた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early wildfire detection is of the utmost importance to enable rapid response
efforts, and thus minimize the negative impacts of wildfire spreads. To this
end, we present \Pyro, a web-scraping-based dataset composed of videos of
wildfires from a network of cameras that were enhanced with manual
bounding-box-level annotations. Our dataset was filtered based on a strategy to
improve the quality and diversity of the data, reducing the final data to a set
of 10,000 images. We ran experiments using a state-of-the-art object detection
model and found out that the proposed dataset is challenging and its use in
concordance with other public dataset helps to reach higher results overall. We
will make our code and data publicly available.
- Abstract(参考訳): 早期の山火事検出は迅速な対応を可能にするために最も重要であり、山火事の拡散による悪影響を最小限に抑えることができる。
この目的のために,手動バウンディングボックスレベルのアノテーションで拡張されたカメラネットワークからの山火事のビデオからなるWebスクラッピングベースのデータセットである \Pyro を提案する。
当社のデータセットは、データの品質と多様性を改善する戦略に基づいてフィルタリングされ、最終的なデータを10,000イメージに削減しました。
我々は最先端のオブジェクト検出モデルを用いて実験を行い、提案したデータセットは困難であり、他の公開データセットと一致して使用することは、全体的な結果に到達するのに役立ちます。
コードとデータを公開します。
関連論文リスト
- BVI-RLV: A Fully Registered Dataset and Benchmarks for Low-Light Video Enhancement [56.97766265018334]
本稿では,2つの異なる低照度条件下での様々な動きシナリオを持つ40のシーンからなる低照度映像データセットを提案する。
我々は、プログラム可能なモータードリーを用いて、通常の光で捉えた完全に登録された地上真実データを提供し、異なる光レベルにわたるピクセルワイドフレームアライメントのための画像ベースアプローチによりそれを洗練する。
実験の結果,Low-light Video enhancement (LLVE) における完全登録ビデオペアの重要性が示された。
論文 参考訳(メタデータ) (2024-07-03T22:41:49Z) - XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
本稿では,自律走行シミュレーションに特化して設計された新しい駆動ビュー合成データセットとベンチマークを提案する。
データセットには、トレーニング軌跡から1-4mずれて取得した画像のテストが含まれているため、ユニークなものだ。
我々は、フロントオンリーおよびマルチカメラ設定下で、既存のNVSアプローチを評価するための最初の現実的なベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-26T14:00:21Z) - Obscured Wildfire Flame Detection By Temporal Analysis of Smoke Patterns
Captured by Unmanned Aerial Systems [0.799536002595393]
本研究は,RGBカメラのみを搭載したドローンを用いて,隠された山火事をリアルタイムに検出する課題について論じる。
本稿では,ビデオシーケンス中の煙のパターンの時間的解析に基づくセマンティックセグメンテーションを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-30T19:45:43Z) - Wildfire Detection Via Transfer Learning: A Survey [2.766371147936368]
本稿では,山頂や森林見張り塔に設置した通常の視界カメラを用いて,山火事の検知に使用されるさまざまなニューラルネットワークモデルについて検討する。
ニューラルネットワークモデルはImageNet-1Kで事前トレーニングされ、カスタムの山火事データセットで微調整される。
論文 参考訳(メタデータ) (2023-06-21T13:57:04Z) - AutoShot: A Short Video Dataset and State-of-the-Art Shot Boundary
Detection [70.99025467739715]
我々はSHOTという新しい公開ショートビデオsHot bOundary deTectionデータセットをリリースする。
SHOTは、853の完全なショートビデオと11,606のショットアノテーションで構成され、2,716の高品質なショット境界アノテーションが200のテストビデオに含まれている。
提案手法はAutoShotと呼ばれ,従来の最先端手法よりもF1スコアが高い。
論文 参考訳(メタデータ) (2023-04-12T19:01:21Z) - RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis [104.53930611219654]
約2000の複雑なシーンからレンダリングされた300k画像からなる,新しいビュー合成のための大規模合成データセットを提案する。
データセットは、新しいビュー合成のための既存の合成データセットよりも桁違いに大きい。
高品質な3Dメッシュの4つのソースを使用して、私たちのデータセットのシーンは、カメラビュー、照明、形状、材料、テクスチャの難しいバリエーションを示します。
論文 参考訳(メタデータ) (2022-05-14T13:15:32Z) - FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time
Wildland Fire Smoke Detection [0.0]
Fire Ignition Library (FIgLib) は、25,000点近い山火事の煙画像のデータセットである。
SmokeyNetは、リアルタイムの山火事煙検知にカメラ画像からの時間情報を利用する、新しいディープラーニングアーキテクチャである。
FIgLibデータセットでトレーニングすると、SmokeyNetは同等のベースラインを上回り、人間のパフォーマンスに匹敵する。
論文 参考訳(メタデータ) (2021-12-16T03:49:58Z) - Next Day Wildfire Spread: A Machine Learning Data Set to Predict
Wildfire Spreading from Remote-Sensing Data [5.814925201882753]
Next Day Wildfire Spread」は、アメリカ全土で10年近くにわたってリモートセンシングされたデータを収集した、歴史的な山火事の収集データである。
我々は、このデータの空間情報を利用して、山火事の拡散を予測する畳み込みオートエンコーダを実装した。
このデータセットは、リモートセンシングデータに基づく1日のリードタイムに基づく山火事伝播モデル開発のためのベンチマークとして使用することができる。
論文 参考訳(メタデータ) (2021-12-04T23:28:44Z) - Few-Shot Video Object Detection [70.43402912344327]
本稿では,Few-Shot Video Object Detection (FSVOD) を紹介する。
fsvod-500は500のクラスからなり、各カテゴリーにクラスバランスのビデオがある。
私達のTPNおよびTMN+は共同およびエンドツーエンドの訓練されます。
論文 参考訳(メタデータ) (2021-04-30T07:38:04Z) - Few-Shot Learning for Video Object Detection in a Transfer-Learning
Scheme [70.45901040613015]
ビデオ物体検出のための数発学習の新たな課題について検討する。
我々は,多数のベースクラスオブジェクトに対して映像物体検出を効果的に訓練するトランスファー学習フレームワークと,ノベルクラスオブジェクトのいくつかのビデオクリップを用いる。
論文 参考訳(メタデータ) (2021-03-26T20:37:55Z) - Active Fire Detection in Landsat-8 Imagery: a Large-Scale Dataset and a
Deep-Learning Study [1.3764085113103217]
本稿では,深層学習技術を用いた火災検知のための大規模データセットについて紹介する。
本稿では,様々な畳み込みニューラルネットワークアーキテクチャを用いて手作りアルゴリズムを近似する方法について検討する。
提案されたデータセット、ソースコード、トレーニングされたモデルはGithubで入手できる。
論文 参考訳(メタデータ) (2021-01-09T19:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。