論文の概要: Mitigating Privacy Risk in Membership Inference by Convex-Concave Loss
- arxiv url: http://arxiv.org/abs/2402.05453v1
- Date: Thu, 8 Feb 2024 07:14:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-09 16:06:46.207453
- Title: Mitigating Privacy Risk in Membership Inference by Convex-Concave Loss
- Title(参考訳): 凸凹損失による会員推測におけるプライバシーリスクの軽減
- Authors: Zhenlong Liu, Lei Feng, Huiping Zhuang, Xiaofeng Cao, Hongxin Wei
- Abstract要約: 機械学習モデルは、トレーニングセットにサンプルがあるかどうかを推測することを目的とした、メンバシップ推論攻撃(MIA)の影響を受けやすい。
既存の作業では、勾配上昇を利用してトレーニングデータの損失分散を拡大し、プライバシリスクを軽減する。
本稿では,勾配降下によるトレーニング損失分布の分散化を可能にする新しい手法であるConvex-Concave Lossを提案する。
- 参考スコア(独自算出の注目度): 17.594402018768882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models are susceptible to membership inference attacks
(MIAs), which aim to infer whether a sample is in the training set. Existing
work utilizes gradient ascent to enlarge the loss variance of training data,
alleviating the privacy risk. However, optimizing toward a reverse direction
may cause the model parameters to oscillate near local minima, leading to
instability and suboptimal performance. In this work, we propose a novel method
-- Convex-Concave Loss, which enables a high variance of training loss
distribution by gradient descent. Our method is motivated by the theoretical
analysis that convex losses tend to decrease the loss variance during training.
Thus, our key idea behind CCL is to reduce the convexity of loss functions with
a concave term. Trained with CCL, neural networks produce losses with high
variance for training data, reinforcing the defense against MIAs. Extensive
experiments demonstrate the superiority of CCL, achieving state-of-the-art
balance in the privacy-utility trade-off.
- Abstract(参考訳): 機械学習モデルは、サンプルがトレーニングセット内にあるかどうかを推測することを目的とした、メンバーシップ推論攻撃(mias)の影響を受けやすい。
既存の作業では、勾配上昇を利用してトレーニングデータの損失分散を拡大し、プライバシーリスクを軽減する。
しかし、逆向きに最適化すると、モデルパラメータが局所的な極小付近で振動し、不安定性と準最適性能をもたらす可能性がある。
本研究では,勾配降下によるトレーニング損失分布の分散化を可能にする新しい手法であるConvex-Concave Lossを提案する。
本手法は, 対流損失はトレーニング中の損失分散を減少させる傾向があるという理論的解析に動機づけられている。
したがって、CCLの背後にある重要な考え方は、凹凸項による損失関数の凸度を低減することである。
CCLでトレーニングされたニューラルネットワークは、トレーニングデータのばらつきの高い損失を生成し、MIAに対する防御を強化する。
広範な実験がcclの優位性を示し、プライバシ利用トレードオフにおける最先端のバランスを実現している。
関連論文リスト
- Conformal Risk Minimization with Variance Reduction [37.74931189657469]
コンフォーマル予測(CP)は、ブラックボックスモデルにおける確率的保証を達成するための分布自由フレームワークである。
最近の研究は、トレーニング中のCP効率の最適化に重点を置いている。
我々は、この概念を共形リスク最小化の問題として定式化する。
論文 参考訳(メタデータ) (2024-11-03T21:48:15Z) - EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting in Classification [1.3778851745408134]
経験的リスク最小化フレームワーク内で損失関数を結合する新しいアンサンブル手法,すなわちEnsLossを提案する。
まず、損失のCC条件を損失導関数に変換し、明示的な損失関数の必要性を回避した。
理論的には、我々のアプローチの統計的一貫性を確立し、その利点に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-09-02T02:40:42Z) - LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization [56.67706781191521]
敵は、学習者に未知の任意の数kの損失関数を破損させることで、外れ値を導入することができる。
我々は,任意の数kで損失関数を破損させることで,敵が外乱を発生させることができる,頑健なオンラインラウンド最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-12T17:08:31Z) - Decoupled Kullback-Leibler Divergence Loss [90.54331083430597]
我々は、クルバック・リブラー(KL)の除算損失がデカップリングカルバック・リブラー(DKL)の除算損失と等価であることを証明した。
我々はKL/DKLにクラスワイドなグローバル情報を導入し、個々のサンプルからバイアスを取ります。
提案手法は,新たな最先端の対人ロバスト性を公衆のリーダーボード上で実現する。
論文 参考訳(メタデータ) (2023-05-23T11:17:45Z) - Adversarial Unlearning: Reducing Confidence Along Adversarial Directions [88.46039795134993]
本稿では,自己生成事例の信頼性を低下させる補完的な正規化戦略を提案する。
RCADと呼ばれるこの手法は、トレーニング損失を増やすために反対に選択された方向に沿って横たわっている流通外の事例に対する信頼性を低下させることを目的としている。
その単純さにもかかわらず、多くの分類ベンチマークでは、RCADを既存の技術に追加して、絶対値の1~3%の精度でテストできることがわかった。
論文 参考訳(メタデータ) (2022-06-03T02:26:24Z) - Sharpness-Aware Training for Free [163.1248341911413]
シャープネスを意識した最小化(SAM)は、損失ランドスケープの幾何学を反映したシャープネス尺度の最小化が一般化誤差を著しく減少させることを示した。
シャープネス・アウェア・トレーニング・フリー(SAF)は、シャープランドスケープをベース上でほぼゼロの計算コストで軽減する。
SAFは、改善された能力で最小限の平らな収束を保証する。
論文 参考訳(メタデータ) (2022-05-27T16:32:43Z) - Mixing between the Cross Entropy and the Expectation Loss Terms [89.30385901335323]
クロスエントロピー損失は、トレーニング中にサンプルを分類するのが難しくなる傾向にある。
最適化目標に期待損失を加えることで,ネットワークの精度が向上することを示す。
実験により,新しいトレーニングプロトコルにより,多様な分類領域における性能が向上することが示された。
論文 参考訳(メタデータ) (2021-09-12T23:14:06Z) - $\sigma^2$R Loss: a Weighted Loss by Multiplicative Factors using
Sigmoidal Functions [0.9569316316728905]
我々は,二乗還元損失(sigma2$R損失)と呼ばれる新たな損失関数を導入する。
我々の損失は明らかな直観と幾何学的解釈を持ち、我々の提案の有効性を実験によって実証する。
論文 参考訳(メタデータ) (2020-09-18T12:34:40Z) - Predicting Training Time Without Training [120.92623395389255]
我々は、事前訓練された深層ネットワークが損失関数の所定の値に収束する必要がある最適化ステップの数を予測する問題に取り組む。
我々は、微調整中の深部ネットワークのトレーニングダイナミクスが線形化モデルによってよく近似されているという事実を活用する。
トレーニングをする必要なく、特定の損失にモデルを微調整するのに要する時間を予測できます。
論文 参考訳(メタデータ) (2020-08-28T04:29:54Z) - Adversarially Robust Learning via Entropic Regularization [31.6158163883893]
我々は、敵対的に堅牢なディープニューラルネットワークを訓練するための新しいアルゴリズムATENTを提案する。
我々の手法は、頑健な分類精度の観点から、競争力(またはより良い)性能を達成する。
論文 参考訳(メタデータ) (2020-08-27T18:54:43Z) - On the Generalization Properties of Adversarial Training [21.79888306754263]
本稿では,汎用的対数学習アルゴリズムの一般化性能について検討する。
滑らかさとL1のペナル化がモデルの対向的堅牢性をどのように改善するかを示すために、一連の数値的研究が行われた。
論文 参考訳(メタデータ) (2020-08-15T02:32:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。