A Solution for Commercializing, Decentralizing and Storing Electronic Medical Records by Integrating Proxy Re-Encryption, IPFS, and Blockchain
- URL: http://arxiv.org/abs/2402.05498v2
- Date: Wed, 5 Jun 2024 02:56:53 GMT
- Title: A Solution for Commercializing, Decentralizing and Storing Electronic Medical Records by Integrating Proxy Re-Encryption, IPFS, and Blockchain
- Authors: Phong Tran, Thong Nguyen, Long Chu, Nhi Tran, Hang Ta,
- Abstract summary: We propose an innovative solution for implementing a decentralized system utilizing an EVM-compatible blockchain and IPFS for decentralized storage.
To ensure privacy and control, we employ Proxy Re-Encryption (PRE), a cryptographic authorized method, within the medical data marketplace.
It empowers users with enhanced control over their health data through tamperproof blockchain smart contracts and IPFS, safeguarding the integrity and privacy of their medical records.
- Score: 6.237350715303438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid expansion of user medical records across global systems presents not only opportunities but also new challenges in maintaining effective application models that ensure user privacy, controllability, and the ability to commercialize patient medical records. Moreover, the proliferation of data analysis models in healthcare institutions necessitates the decentralization and restorability of medical record data. It is imperative that user medical data collected from these systems can be easily analyzed and utilized even years after collection, without the risk of data loss due to numerous factors. Additionally, medical information must be authorized by the data owner, granting patients the right to accept or decline data usage requests from medical research agencies. In response, we propose an innovative solution for implementing a decentralized system utilizing an EVM-compatible blockchain and IPFS for decentralized storage. To ensure privacy and control, we employ Proxy Re-Encryption (PRE), a cryptographic authorized method, within the medical data marketplace. Our proposed architecture significantly reduces costs associated with granting read access to healthcare research agencies by minimizing the encryption and decryption time of stored records. Furthermore, it empowers users with enhanced control over their health data through tamperproof blockchain smart contracts and IPFS, safeguarding the integrity and privacy of their medical records.
Related papers
- Block MedCare: Advancing healthcare through blockchain integration [0.0]
This paper investigates the integration of blockchain technology in healthcare.
It focuses on its potential to revolutionize Electronic Health Records (EHR) management and data sharing.
We propose a novel system that empowers patients to securely store and manage their medical data.
arXiv Detail & Related papers (2024-10-07T17:54:13Z) - An Intelligent Quantum Cyber-Security Framework for Healthcare Data Management [4.828148213747833]
This paper introduces a comprehensive quantum-based framework to overwhelm the potential security and privacy issues for secure healthcare data management.
The proposed framework delivers overall healthcare data management by coupling the advanced and more competent quantum approach with machine learning.
The experimental evaluation and comparison of the proposed IQ-HDM framework with state-of-the-art methods outline a considerable improvement up to 67.6%, in tackling cyber threats related to healthcare data security.
arXiv Detail & Related papers (2024-10-04T08:04:48Z) - Secure and Transparent Medical Record Management System Using Python and Blockchain [0.0]
We propose a robust health record storage and management system built on blockchain technology.
Unlike traditional databases, blockchain distributes data across a network of nodes, ensuring redundancy and resilience against cyber-attacks.
Our system prioritizes patient empowerment by granting individuals complete control over their health records.
arXiv Detail & Related papers (2024-08-04T16:29:13Z) - S3PHER: Secure and Searchable System for Patient-driven HEalth data shaRing [0.0]
Current systems for sharing health data between patients and caregivers do not fully address the critical security requirements of privacy, confidentiality, and consent management.
We present S3PHER, a novel approach to sharing health data that provides patients with control over who accesses their data, what data is accessed, and when.
arXiv Detail & Related papers (2024-04-17T13:31:50Z) - Retrieval Augmented Thought Process for Private Data Handling in Healthcare [53.89406286212502]
We introduce the Retrieval-Augmented Thought Process (RATP)
RATP formulates the thought generation of Large Language Models (LLMs)
On a private dataset of electronic medical records, RATP achieves 35% additional accuracy compared to in-context retrieval-augmented generation for the question-answering task.
arXiv Detail & Related papers (2024-02-12T17:17:50Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - A Review-based Taxonomy for Secure Health Care Monitoring: Wireless
Smart Cameras [9.4545147165828]
This research focuses on the secure storage of patient and medical records in the healthcare sector.
A potential solution comes from biometrics, although their use may be time-consuming and can slow down data retrieval.
This research aims to overcome these challenges and enhance data access control in the healthcare sector through the addition of biometrics in the form of fingerprints.
arXiv Detail & Related papers (2021-07-05T11:59:10Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Second layer data governance for permissioned blockchains: the privacy
management challenge [58.720142291102135]
In pandemic situations, such as the COVID-19 and Ebola outbreak, the action related to sharing health data is crucial to avoid the massive infection and decrease the number of deaths.
In this sense, permissioned blockchain technology emerges to empower users to get their rights providing data ownership, transparency, and security through an immutable, unified, and distributed database ruled by smart contracts.
arXiv Detail & Related papers (2020-10-22T13:19:38Z) - Give more data, awareness and control to individual citizens, and they
will help COVID-19 containment [74.10257867142049]
Contact-tracing apps are being proposed for large scale adoption by many countries.
A centralized approach raises concerns about citizens' privacy and needlessly strong digital surveillance.
We advocate a decentralized approach, where both contact and location data are collected exclusively in individual citizens' "personal data stores"
arXiv Detail & Related papers (2020-04-10T20:30:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.