論文の概要: Real-time Holistic Robot Pose Estimation with Unknown States
- arxiv url: http://arxiv.org/abs/2402.05655v2
- Date: Tue, 9 Jul 2024 09:29:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 00:01:00.996500
- Title: Real-time Holistic Robot Pose Estimation with Unknown States
- Title(参考訳): 未知状態を用いた実時間ホロスティックロボットの姿勢推定
- Authors: Shikun Ban, Juling Fan, Xiaoxuan Ma, Wentao Zhu, Yu Qiao, Yizhou Wang,
- Abstract要約: RGB画像からロボットのポーズを推定することは、コンピュータビジョンとロボット工学において重要な問題である。
従来の手法では、例えば接地型ロボットの関節角など、ロボットの内部状態の完全な知識が想定されていた。
本研究は,RGB画像からリアルタイムロボットのポーズ推定を行う上で,既知のロボットの状態を必要としない効率的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 30.41806081818826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating robot pose from RGB images is a crucial problem in computer vision and robotics. While previous methods have achieved promising performance, most of them presume full knowledge of robot internal states, e.g. ground-truth robot joint angles. However, this assumption is not always valid in practical situations. In real-world applications such as multi-robot collaboration or human-robot interaction, the robot joint states might not be shared or could be unreliable. On the other hand, existing approaches that estimate robot pose without joint state priors suffer from heavy computation burdens and thus cannot support real-time applications. This work introduces an efficient framework for real-time robot pose estimation from RGB images without requiring known robot states. Our method estimates camera-to-robot rotation, robot state parameters, keypoint locations, and root depth, employing a neural network module for each task to facilitate learning and sim-to-real transfer. Notably, it achieves inference in a single feed-forward pass without iterative optimization. Our approach offers a 12-time speed increase with state-of-the-art accuracy, enabling real-time holistic robot pose estimation for the first time. Code and models are available at https://github.com/Oliverbansk/Holistic-Robot-Pose-Estimation.
- Abstract(参考訳): RGB画像からロボットのポーズを推定することは、コンピュータビジョンとロボット工学において重要な問題である。
従来の手法は有望な性能を達成してきたが、そのほとんどはロボットの内部状態、例えば接地型ロボット関節角の完全な知識を前提としている。
しかし、この仮定は現実的な状況では必ずしも有効ではない。
マルチロボットのコラボレーションや人間とロボットのインタラクションのような現実世界のアプリケーションでは、ロボットの関節状態は共有されず、信頼できないこともある。
一方, 従来のロボットの動作推定手法は, 計算負荷が重いため, リアルタイムアプリケーションをサポートできない。
本研究は,RGB画像からリアルタイムロボットのポーズ推定を行う上で,既知のロボットの状態を必要としない効率的なフレームワークを提案する。
本手法では,ロボットの状態パラメータ,キーポイント位置,ルート深さを推定し,各タスクにニューラルネットワークモジュールを用いて学習とシミュレートを容易にする。
特に、繰り返し最適化することなく、単一のフィードフォワードパスでの推論を実現する。
提案手法は,最先端の精度で12倍の速度向上を実現し,実時間で総合的なロボットのポーズ推定を可能にする。
コードとモデルはhttps://github.com/Oliverbansk/Holistic-Robot-Pose-Estimationで公開されている。
関連論文リスト
- GISR: Geometric Initialization and Silhouette-based Refinement for Single-View Robot Pose and Configuration Estimation [0.0]
GISRは、リアルタイム実行を優先する、深い構成とロボット対カメラのポーズ推定のための方法である。
提案手法を公開データセット上で評価し,GISRが既存の最先端手法と競合することを示す。
論文 参考訳(メタデータ) (2024-05-08T08:39:25Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - What Matters to You? Towards Visual Representation Alignment for Robot
Learning [81.30964736676103]
人のために運用する場合、ロボットはエンドユーザーの好みに合わせて報酬を最適化する必要がある。
本稿では、視覚的表現アライメント問題を解決するためのRAPL(Representation-Aligned Preference-based Learning)を提案する。
論文 参考訳(メタデータ) (2023-10-11T23:04:07Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Image-based Pose Estimation and Shape Reconstruction for Robot
Manipulators and Soft, Continuum Robots via Differentiable Rendering [20.62295718847247]
自律システムは3D世界における動きを捉えローカライズするためにセンサーに依存しているため、計測データからの状態推定はロボットアプリケーションにとって極めて重要である。
本研究では,カメラ画像から画像に基づくロボットのポーズ推定と形状再構成を実現する。
柔らかい連続ロボットの形状再構成において,幾何学的形状プリミティブを用いる手法が高精度であり,ロボットマニピュレータの姿勢推定が可能であることを実証した。
論文 参考訳(メタデータ) (2023-02-27T18:51:29Z) - Single-view robot pose and joint angle estimation via render & compare [40.05546237998603]
本稿では,1枚のRGB画像から関節角度と6Dカメラとロボットのポーズを推定する手法であるRoboPoseを紹介する。
これは、モバイルおよび反復型自律システムに他のロボットと対話する能力を与える上で、重要な問題である。
論文 参考訳(メタデータ) (2021-04-19T14:48:29Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z) - Hyperparameters optimization for Deep Learning based emotion prediction
for Human Robot Interaction [0.2549905572365809]
インセプションモジュールをベースとした畳み込みニューラルネットワークアーキテクチャを提案する。
モデルは人型ロボットNAOにリアルタイムに実装され、モデルの堅牢性を評価する。
論文 参考訳(メタデータ) (2020-01-12T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。