Interpretable classifiers for tabular data via discretization and feature selection
- URL: http://arxiv.org/abs/2402.05680v3
- Date: Wed, 18 Sep 2024 11:43:43 GMT
- Title: Interpretable classifiers for tabular data via discretization and feature selection
- Authors: Reijo Jaakkola, Tomi Janhunen, Antti Kuusisto, Masood Feyzbakhsh Rankooh, Miikka Vilander,
- Abstract summary: We introduce a method for computing immediately human interpretable yet accurate classifiers from tabular data.
We demonstrate the approach via 12 experiments, obtaining results with accuracies comparable to ones obtained via random forests, XGBoost, and existing results for the same datasets in the literature.
- Score: 4.195816579137846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a method for computing immediately human interpretable yet accurate classifiers from tabular data. The classifiers obtained are short Boolean formulas, computed via first discretizing the original data and then using feature selection coupled with a very fast algorithm for producing the best possible Boolean classifier for the setting. We demonstrate the approach via 12 experiments, obtaining results with accuracies comparable to ones obtained via random forests, XGBoost, and existing results for the same datasets in the literature. In most cases, the accuracy of our method is in fact similar to that of the reference methods, even though the main objective of our study is the immediate interpretability of our classifiers. We also prove a new result on the probability that the classifier we obtain from real-life data corresponds to the ideally best classifier with respect to the background distribution the data comes from.
Related papers
- Globally Interpretable Classifiers via Boolean Formulas with Dynamic Propositions [4.195816579137846]
Our method is implemented using Answer Set Programming.
We investigate seven datasets and compare our results to ones obtainable by state-of-the-art classifiers.
The advantage of our classifiers in all cases is that they are very short and immediately human intelligible as opposed to the black-box nature of the reference methods.
arXiv Detail & Related papers (2024-06-03T08:46:17Z) - Classification Tree-based Active Learning: A Wrapper Approach [4.706932040794696]
This paper proposes a wrapper active learning method for classification, organizing the sampling process into a tree structure.
A classification tree constructed on an initial set of labeled samples is considered to decompose the space into low-entropy regions.
This adaptation proves to be a significant enhancement over existing active learning methods.
arXiv Detail & Related papers (2024-04-15T17:27:00Z) - Obtaining Explainable Classification Models using Distributionally
Robust Optimization [12.511155426574563]
We study generalized linear models constructed using sets of feature value rules.
An inherent trade-off exists between rule set sparsity and its prediction accuracy.
We propose a new formulation to learn an ensemble of rule sets that simultaneously addresses these competing factors.
arXiv Detail & Related papers (2023-11-03T15:45:34Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - Learning from Incomplete Features by Simultaneous Training of Neural
Networks and Sparse Coding [24.3769047873156]
This paper addresses the problem of training a classifier on a dataset with incomplete features.
We assume that different subsets of features (random or structured) are available at each data instance.
A new supervised learning method is developed to train a general classifier, using only a subset of features per sample.
arXiv Detail & Related papers (2020-11-28T02:20:39Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Random Hyperboxes [9.061408029414455]
We show a generalization error bound of the proposed classifier based on the strength of the individual hyperbox-based classifiers.
The effectiveness of the proposed classifier is analyzed using a carefully selected illustrative example.
We identify the existing issues related to the generalization error bounds of the real datasets and inform the potential research directions.
arXiv Detail & Related papers (2020-06-01T03:42:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.