Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models
- URL: http://arxiv.org/abs/2410.20008v1
- Date: Fri, 25 Oct 2024 23:38:28 GMT
- Title: Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models
- Authors: Zheng Zhao, Yftah Ziser, Shay B. Cohen,
- Abstract summary: Fine-tuning pre-trained large language models (LLMs) on a diverse array of tasks has become a common approach for building models.
This study investigates the task-specific information encoded in pre-trained LLMs and the effects of instruction tuning on their representations.
- Score: 22.676688441884465
- License:
- Abstract: Fine-tuning pre-trained large language models (LLMs) on a diverse array of tasks has become a common approach for building models that can solve various natural language processing (NLP) tasks. However, where and to what extent these models retain task-specific knowledge remains largely unexplored. This study investigates the task-specific information encoded in pre-trained LLMs and the effects of instruction tuning on their representations across a diverse set of over 60 NLP tasks. We use a set of matrix analysis tools to examine the differences between the way pre-trained and instruction-tuned LLMs store task-specific information. Our findings reveal that while some tasks are already encoded within the pre-trained LLMs, others greatly benefit from instruction tuning. Additionally, we pinpointed the layers in which the model transitions from high-level general representations to more task-oriented representations. This finding extends our understanding of the governing mechanisms of LLMs and facilitates future research in the fields of parameter-efficient transfer learning and multi-task learning.
Related papers
- A Survey of Prompt Engineering Methods in Large Language Models for Different NLP Tasks [0.0]
Large language models (LLMs) have shown remarkable performance on many different Natural Language Processing (NLP) tasks.
Prompt engineering plays a key role in adding more to the already existing abilities of LLMs to achieve significant performance gains.
This paper summarizes different prompting techniques and club them together based on different NLP tasks that they have been used for.
arXiv Detail & Related papers (2024-07-17T20:23:19Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond [16.913115978881866]
We propose a framework for unified task embeddings (FUTE), task embeddings from various models, including smaller language models and Large Language Models with varied prompts, within a single vector space.
Such uniformity enables comparison and analysis of similarities amongst different models, broadening the scope and utility of existing task embedding methods in multi-model scenarios.
arXiv Detail & Related papers (2024-02-22T13:13:31Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks.
Their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language.
We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories.
arXiv Detail & Related papers (2024-01-12T12:10:28Z) - On the Performance of Multimodal Language Models [4.677125897916577]
This study conducts a comparative analysis of different multimodal instruction tuning approaches.
We reveal key insights for guiding architectural choices when incorporating multimodal capabilities into large language models.
arXiv Detail & Related papers (2023-10-04T23:33:36Z) - Multi-Task Instruction Tuning of LLaMa for Specific Scenarios: A
Preliminary Study on Writing Assistance [60.40541387785977]
Small foundational models can display remarkable proficiency in tackling diverse tasks when fine-tuned using instruction-driven data.
In this work, we investigate a practical problem setting where the primary focus is on one or a few particular tasks rather than general-purpose instruction following.
Experimental results show that fine-tuning LLaMA on writing instruction data significantly improves its ability on writing tasks.
arXiv Detail & Related papers (2023-05-22T16:56:44Z) - Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond [48.70557995528463]
This guide aims to provide researchers and practitioners with valuable insights and best practices for working with Large Language Models.
We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios.
arXiv Detail & Related papers (2023-04-26T17:52:30Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.