Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss
- URL: http://arxiv.org/abs/2402.05928v3
- Date: Wed, 12 Jun 2024 19:10:04 GMT
- Title: Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss
- Authors: Ingvar Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni,
- Abstract summary: We show that whenever the topologies of $L2$ and $Psi_p$ are comparable on our hypothesis class $mathscrF$, $mathscrF$ is a weakly sub-Gaussian class.
Our result holds whether the problem is realizable or not and we refer to this as a emphnear mixing-free rate, since direct dependence on mixing is relegated to an additive higher order term.
- Score: 33.18537822803389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we study statistical learning with dependent ($\beta$-mixing) data and square loss in a hypothesis class $\mathscr{F}\subset L_{\Psi_p}$ where $\Psi_p$ is the norm $\|f\|_{\Psi_p} \triangleq \sup_{m\geq 1} m^{-1/p} \|f\|_{L^m} $ for some $p\in [2,\infty]$. Our inquiry is motivated by the search for a sharp noise interaction term, or variance proxy, in learning with dependent data. Absent any realizability assumption, typical non-asymptotic results exhibit variance proxies that are deflated multiplicatively by the mixing time of the underlying covariates process. We show that whenever the topologies of $L^2$ and $\Psi_p$ are comparable on our hypothesis class $\mathscr{F}$ -- that is, $\mathscr{F}$ is a weakly sub-Gaussian class: $\|f\|_{\Psi_p} \lesssim \|f\|_{L^2}^\eta$ for some $\eta\in (0,1]$ -- the empirical risk minimizer achieves a rate that only depends on the complexity of the class and second order statistics in its leading term. Our result holds whether the problem is realizable or not and we refer to this as a \emph{near mixing-free rate}, since direct dependence on mixing is relegated to an additive higher order term. We arrive at our result by combining the above notion of a weakly sub-Gaussian class with mixed tail generic chaining. This combination allows us to compute sharp, instance-optimal rates for a wide range of problems. Examples that satisfy our framework include sub-Gaussian linear regression, more general smoothly parameterized function classes, finite hypothesis classes, and bounded smoothness classes.
Related papers
- Estimation and Inference in Distributional Reinforcement Learning [28.253677740976197]
We show that a dataset of size $widetilde Oleft(frac|mathcalS||mathcalA|epsilon2 (1-gamma)4right)$ suffices to ensure the Kolmogorov metric and total variation metric between $hatetapi$ and $etapi$ is below $epsilon$ with high probability.
Our findings give rise to a unified approach to statistical inference of a wide class of statistical functionals of $etapi$.
arXiv Detail & Related papers (2023-09-29T14:14:53Z) - Statistical Learning under Heterogeneous Distribution Shift [71.8393170225794]
Ground-truth predictor is additive $mathbbE[mathbfz mid mathbfx,mathbfy] = f_star(mathbfx) +g_star(mathbfy)$.
arXiv Detail & Related papers (2023-02-27T16:34:21Z) - Universality laws for Gaussian mixtures in generalized linear models [22.154969876570238]
We investigate the joint statistics of the family of generalized linear estimators $(Theta_1, dots, Theta_M)$.
This allow us to prove the universality of different quantities of interest, such as the training and generalization errors.
We discuss the applications of our results to different machine learning tasks of interest, such as ensembling and uncertainty.
arXiv Detail & Related papers (2023-02-17T15:16:06Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - From Smooth Wasserstein Distance to Dual Sobolev Norm: Empirical
Approximation and Statistical Applications [18.618590805279187]
We show that $mathsfW_p(sigma)$ is controlled by a $pth order smooth dual Sobolev $mathsfd_p(sigma)$.
We derive the limit distribution of $sqrtnmathsfd_p(sigma)(hatmu_n,mu)$ in all dimensions $d$, when $mu$ is sub-Gaussian.
arXiv Detail & Related papers (2021-01-11T17:23:24Z) - Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and
ReLUs under Gaussian Marginals [49.60752558064027]
We study the fundamental problems of agnostically learning halfspaces and ReLUs under Gaussian marginals.
Our lower bounds provide strong evidence that current upper bounds for these tasks are essentially best possible.
arXiv Detail & Related papers (2020-06-29T17:10:10Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.