論文の概要: idMotif: An Interactive Motif Identification in Protein Sequences
- arxiv url: http://arxiv.org/abs/2402.05953v1
- Date: Sun, 4 Feb 2024 06:51:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-18 14:19:32.081297
- Title: idMotif: An Interactive Motif Identification in Protein Sequences
- Title(参考訳): idMotif:タンパク質配列の対話型モチーフ同定
- Authors: Ji Hwan Park, Vikash Prasad, Sydney Newsom, Fares Najar, Rakhi Rajan
- Abstract要約: idMotifは、ドメインの専門家がタンパク質配列内のモチーフを識別するのを助けるために設計されたビジュアル分析フレームワークである。
深層学習に基づくタンパク質配列の分類法を用いる。
- 参考スコア(独自算出の注目度): 3.110777659396693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces idMotif, a visual analytics framework designed to aid
domain experts in the identification of motifs within protein sequences.
Motifs, short sequences of amino acids, are critical for understanding the
distinct functions of proteins. Identifying these motifs is pivotal for
predicting diseases or infections. idMotif employs a deep learning-based method
for the categorization of protein sequences, enabling the discovery of
potential motif candidates within protein groups through local explanations of
deep learning model decisions. It offers multiple interactive views for the
analysis of protein clusters or groups and their sequences. A case study,
complemented by expert feedback, illustrates idMotif's utility in facilitating
the analysis and identification of protein sequences and motifs.
- Abstract(参考訳): この記事では、ドメインの専門家によるタンパク質配列内のモチーフの識別を支援する、ビジュアル分析フレームワークidmotifを紹介します。
アミノ酸の短い配列であるモチーフは、タンパク質の異なる機能を理解するために重要である。
これらのモチーフを同定することは病気や感染を予測するのに重要である。
idmotifは、深層学習に基づくタンパク質配列の分類手法を採用しており、深層学習モデル決定の局所的な説明を通じて、タンパク質群内の潜在的なモチーフ候補の発見を可能にする。
タンパク質クラスターやグループとその配列を分析するために、複数のインタラクティブビューを提供する。
専門家のフィードバックによって補完されたケーススタディでは、タンパク質の配列とモチーフの分析と同定を容易にするidMotifの有用性が説明されている。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - GOProteinGNN: Leveraging Protein Knowledge Graphs for Protein Representation Learning [27.192150057715835]
GOProteinGNNは、タンパク質知識グラフ情報を統合することにより、タンパク質言語モデルを強化する新しいアーキテクチャである。
我々のアプローチは、個々のアミノ酸レベルとタンパク質レベルの両方で情報の統合を可能にし、包括的で効果的な学習プロセスを可能にします。
論文 参考訳(メタデータ) (2024-07-31T17:54:22Z) - Clustering for Protein Representation Learning [72.72957540484664]
本稿では,タンパク質の臨界成分を自動的に検出するニューラルネットワーククラスタリングフレームワークを提案する。
我々のフレームワークはタンパク質をグラフとして扱い、各ノードはアミノ酸を表し、各エッジはアミノ酸間の空間的またはシーケンシャルな接続を表す。
タンパク質の折り畳み分類, 酵素反応分類, 遺伝子期予測, 酵素コミッショニング数予測の4つの課題について検討した。
論文 参考訳(メタデータ) (2024-03-30T05:51:09Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
タンパク質-タンパク質相互作用(PPI)の予測は、生物学的機能や疾患を理解する上で重要である。
PPI予測に対する従来の機械学習アプローチは、主に直接的な物理的相互作用に焦点を当てていた。
PPIに適したLLMを用いた新しいフレームワークProLLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T05:32:42Z) - ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training [82.37346937497136]
本稿では,タンパク質中心タスクとタンパク質言語タスクの両方を対象とした多機能多言語多言語言語モデル (LLM) を提案する。
ProtLLMはユニークな動的タンパク質実装機構を備えており、複雑な入力を処理できる。
専門的なタンパク質語彙を開発することで、自然言語だけでなく、膨大な候補からタンパク質を予測できる能力をモデルに装備する。
論文 参考訳(メタデータ) (2024-02-28T01:29:55Z) - Multi-level Protein Representation Learning for Blind Mutational Effect
Prediction [5.207307163958806]
本稿では,タンパク質構造解析のためのシーケンシャルおよび幾何学的アナライザをカスケードする,新しい事前学習フレームワークを提案する。
野生型タンパク質の自然選択をシミュレートすることにより、所望の形質に対する突然変異方向を誘導する。
提案手法は,多種多様な効果予測タスクに対して,パブリックデータベースと2つの新しいデータベースを用いて評価する。
論文 参考訳(メタデータ) (2023-06-08T03:00:50Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Binary classification of proteins by a Machine Learning approach [0.0]
本稿では,タンパク質データバンクに含まれるタンパク質の記述に基づいてアミノ酸のタンパク質鎖を分類するシステムを提案する。
それぞれのタンパク質は、XML形式でのファイルの化学・物理・幾何学的特性で完全に記述されている。
この研究の目的は、大量のデータの収集と管理のためのディープラーニング機械を設計し、そのアミノ酸配列の分類への応用を通じてそれを検証することである。
論文 参考訳(メタデータ) (2021-11-03T01:58:16Z) - Deep Generative Modeling for Protein Design [0.0]
ディープラーニングアプローチは、画像分類や自然言語処理などの分野で画期的な成果を上げている。
タンパク質の遺伝子モデルが開発され、既知のタンパク質配列を全て含む、特定のタンパク質ファミリーをモデル化する、または個々のタンパク質のダイナミクスを外挿する。
本稿では、タンパク質のモデリングに最も成功した5種類の生成モデルについて論じ、ガイドされたタンパク質設計のためのフレームワークを提供する。
論文 参考訳(メタデータ) (2021-08-31T14:38:26Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。