論文の概要: Multi-scale transformers with Adaptive Pathways for Time Series
Forecasting
- arxiv url: http://arxiv.org/abs/2402.05956v2
- Date: Tue, 20 Feb 2024 06:16:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 19:26:12.109106
- Title: Multi-scale transformers with Adaptive Pathways for Time Series
Forecasting
- Title(参考訳): 時系列予測のための適応経路を持つマルチスケールトランス
- Authors: Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang,
Qingsong Wen, Bin Yang, Chenjuan Guo
- Abstract要約: 適応経路を持つマルチスケールトランスであるPathformerを提案する。
提案したPathformerは,時間分解能と時間差を統合してマルチスケールモデリングを行う。
- 参考スコア(独自算出の注目度): 32.859967548545335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based models have achieved some success in time series
forecasting. Existing methods mainly model time series from limited or fixed
scales, making it challenging to capture different characteristics spanning
various scales. In this paper, we propose Pathformer, a multi-scale transformer
with adaptive pathways. The proposed Pathformer integrates both temporal
resolution and temporal distance for multi-scale modeling. Multi-scale division
divides the time series into different temporal resolutions using patches of
various sizes. Based on the division of each scale, dual attention is performed
over these patches to capture global correlations and local details as temporal
dependencies. We further enrich the multi-scale transformer with adaptive
pathways, which adaptively adjust the multi-scale modeling process based on the
varying temporal dynamics in the input time series, improving the prediction
accuracy and generalization of Pathformer. Extensive experiments on eleven
real-world datasets demonstrate that Pathformer not only achieves
state-of-the-art performance by surpassing all current models but also exhibits
stronger generalization abilities under various transfer scenarios.
- Abstract(参考訳): トランスフォーマーベースのモデルは時系列予測でいくつかの成功を収めた。
既存の手法は主に限定的または固定的なスケールから時系列をモデル化しており、様々なスケールにまたがる異なる特性を捉えるのが困難である。
本稿では,適応経路を持つマルチスケールトランスであるPathformerを提案する。
提案するパスフォーマは時間分解能と時間距離の両方を統合し,マルチスケールモデリングを行う。
マルチスケール分割は、時系列を異なる時間分解能に分割する。
各スケールの分割に基づいて、グローバル相関と局所的詳細を時間的依存関係として捉えるために、これらのパッチに対して二重の注意が払われる。
さらに,入力時系列の時間変化に基づいて適応的にマルチスケールモデリングプロセスを調整し,予測精度とパスフォーマの一般化を改善した適応経路を持つマルチスケール変圧器をさらに強化する。
11の実世界のデータセットに対する大規模な実験により、Pathformerは現在のモデルをすべて越えて最先端のパフォーマンスを達成するだけでなく、さまざまな移行シナリオ下でのより強力な一般化能力も示している。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - DRFormer: Multi-Scale Transformer Utilizing Diverse Receptive Fields for Long Time-Series Forecasting [3.420673126033772]
本稿では,動的スパース学習アルゴリズムを用いた動的トークン化手法を提案する。
提案するDRFormerは,実世界の様々なデータセットを用いて評価し,既存の手法と比較して,その優位性を示す実験結果を得た。
論文 参考訳(メタデータ) (2024-08-05T07:26:47Z) - Rough Transformers: Lightweight Continuous-Time Sequence Modelling with Path Signatures [46.58170057001437]
本稿では,入力シーケンスの連続時間表現で動作するトランスフォーマーモデルのバリエーションであるRough Transformerを紹介する。
様々な時系列関連タスクにおいて、Rough Transformersはベニラアテンションよりも常に優れています。
論文 参考訳(メタデータ) (2024-05-31T14:00:44Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
時系列予測は、様々な領域における複雑な力学の理解と予測に不可欠である。
GridTSTは、革新的な多方向性の注意を用いた2つのアプローチの利点を組み合わせたモデルである。
このモデルは、さまざまな現実世界のデータセットに対して、常に最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-05-22T16:41:21Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
本研究では,階層化されたTime2vec埋め込み,動的グラフCNN,Transformerを統合し,グローバルかつ局所的な空間時間情報を抽出する新たな異常検出手法EdgeConvFormerを提案する。
実験により、EdgeConvFormerは、多変量時系列データから時空間モデリングを学習し、異なるスケールの多くの実世界のデータセットに対する最先端のアプローチよりも優れた異常検出性能を得ることができることが示された。
論文 参考訳(メタデータ) (2023-12-04T08:38:54Z) - Multi-resolution Time-Series Transformer for Long-term Forecasting [24.47302799009906]
様々な時間パターンを異なる解像度で同時モデリングするための新しいフレームワークMTST(Multi- resolution Time-Series Transformer)を提案する。
多くの既存の時系列変換器とは対照的に、異なるスケールで周期成分を抽出するのに適する相対的な位置符号化を用いる。
論文 参考訳(メタデータ) (2023-11-07T17:18:52Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
本研究では,各サンプルに対して総合的な時間的相互作用特徴学習を実現するためのトランスフォーマーベースのエンコーダを提案する。
実世界の3つのデータセットについて広範な実験を行い、提案したCoFormerが既存の手法を大幅に上回っていることを検証した。
論文 参考訳(メタデータ) (2023-10-17T06:29:09Z) - iTransformer: Inverted Transformers Are Effective for Time Series Forecasting [62.40166958002558]
iTransformerを提案する。これは、逆次元に注意とフィードフォワードのネットワークを単純に適用する。
iTransformerモデルは、挑戦的な現実世界のデータセットの最先端を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:44:09Z) - W-Transformers : A Wavelet-based Transformer Framework for Univariate
Time Series Forecasting [7.075125892721573]
我々はウェーブレットベースのトランスフォーマーエンコーダアーキテクチャを用いて,非定常時系列のトランスフォーマーモデルを構築した。
各種ドメインから公開されているベンチマーク時系列データセットについて,本フレームワークの評価を行った。
論文 参考訳(メタデータ) (2022-09-08T17:39:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。