Capability enhancement of the X-ray micro-tomography system via
ML-assisted approaches
- URL: http://arxiv.org/abs/2402.05983v1
- Date: Thu, 8 Feb 2024 14:23:24 GMT
- Title: Capability enhancement of the X-ray micro-tomography system via
ML-assisted approaches
- Authors: Dhruvi Shah, Shruti Mehta, Ashish Agrawal, Shishir Purohit, Bhaskar
Chaudhury
- Abstract summary: Ring artifacts in X-ray micro-CT images are one of the primary causes of concern in their accurate visual interpretation and quantitative analysis.
This article presents a convolution neural network (CNN)-based Deep Learning (DL) model inspired by UNet with a series of encoder and decoder units with skip connections for removal of ring artifacts.
- Score: 0.8999666725996978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ring artifacts in X-ray micro-CT images are one of the primary causes of
concern in their accurate visual interpretation and quantitative analysis. The
geometry of X-ray micro-CT scanners is similar to the medical CT machines,
except the sample is rotated with a stationary source and detector. The ring
artifacts are caused by a defect or non-linear responses in detector pixels
during the MicroCT data acquisition. Artifacts in MicroCT images can often be
so severe that the images are no longer useful for further analysis. Therefore,
it is essential to comprehend the causes of artifacts and potential solutions
to maximize image quality. This article presents a convolution neural network
(CNN)-based Deep Learning (DL) model inspired by UNet with a series of encoder
and decoder units with skip connections for removal of ring artifacts. The
proposed architecture has been evaluated using the Structural Similarity Index
Measure (SSIM) and Mean Squared Error (MSE). Additionally, the results are
compared with conventional filter-based non-ML techniques and are found to be
better than the latter.
Related papers
- Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
Sparse-angle tomographic scans reduce radiation and accelerate data acquisition, but suffer from image artifacts and noise.
Existing image processing algorithms can restore CT reconstruction quality but often require large training data sets or can not be used for truncated objects.
This work presents a self-supervised projection inpainting method that allows optimizing missing projective views via gradient-based optimization.
arXiv Detail & Related papers (2023-02-13T15:15:18Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Blind microscopy image denoising with a deep residual and multiscale
encoder/decoder network [0.0]
Deep multiscale convolutional encoder-decoder neural network is proposed.
The proposed model reaches on average 38.38 of PSNR and 0.98 of SSIM on a test set of 57458 images.
arXiv Detail & Related papers (2021-05-01T14:54:57Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Learning-based Defect Recognition for Quasi-Periodic Microscope Images [0.0]
We propose a semi-supervised machine learning method that assists in the detection of lattice defects from atomic resolution microscope images.
It involves a convolutional neural network that classifies image patches as defective or non-defective, a graph-based that chooses one non-defective patch as a model, and finally an automatically generated convolutional filter bank.
The algorithm is tested on III-V/Si crystalline materials and successfully evaluated against different metrics, showing promising results even for extremely small training data sets.
arXiv Detail & Related papers (2020-07-02T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.