Gradient Aligned Regression via Pairwise Losses
- URL: http://arxiv.org/abs/2402.06104v3
- Date: Wed, 22 May 2024 20:10:01 GMT
- Title: Gradient Aligned Regression via Pairwise Losses
- Authors: Dixian Zhu, Tianbao Yang, Livnat Jerby,
- Abstract summary: Gradient Aligned Regression (GAR) is a competitive alternative method in label space.
Running time experiments demonstrate the superior efficiency of the proposed GAR over existing methods.
We limit our current scope as regression on the clean data setting without noises, outliers or distributional shifts.
- Score: 40.676226700035585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regression is a fundamental task in machine learning that has garnered extensive attention over the past decades. The conventional approach for regression involves employing loss functions that primarily concentrate on aligning model prediction with the ground truth for each individual data sample. Recent research endeavors have introduced novel perspectives by incorporating label similarity to regression via imposing extra pairwise regularization on the latent feature space and demonstrated the effectiveness. However, there are two drawbacks for those approaches: i) their pairwise operation in latent feature space is computationally more expensive than conventional regression losses; ii) it lacks of theoretical justifications behind such regularization. In this work, we propose GAR (Gradient Aligned Regression) as a competitive alternative method in label space, which is constituted by a conventional regression loss and two pairwise label difference losses for gradient alignment including magnitude and direction. GAR enjoys: i) the same level efficiency as conventional regression loss because the quadratic complexity for the proposed pairwise losses can be reduced to linear complexity; ii) theoretical insights from learning the pairwise label difference to learning the gradient of the ground truth function. We limit our current scope as regression on the clean data setting without noises, outliers or distributional shifts, etc. We demonstrate the effectiveness of the proposed method practically on two synthetic datasets and on eight extensive real-world tasks from six benchmark datasets with other eight competitive baselines. Running time experiments demonstrate the superior efficiency of the proposed GAR over existing methods with pairwise regularization in latent feature space and ablation studies demonstrate the effectiveness of each component for GAR.
Related papers
- Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
We focus on distributed estimation and support recovery for high-dimensional linear quantile regression.
We transform the original quantile regression into the least-squares optimization.
An efficient algorithm is developed, which enjoys high computation and communication efficiency.
arXiv Detail & Related papers (2024-05-13T08:32:22Z) - Deep Regression Representation Learning with Topology [57.203857643599875]
We study how the effectiveness of a regression representation is influenced by its topology.
We introduce PH-Reg, a regularizer that matches the intrinsic dimension and topology of the feature space with the target space.
Experiments on synthetic and real-world regression tasks demonstrate the benefits of PH-Reg.
arXiv Detail & Related papers (2024-04-22T06:28:41Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - ContrasInver: Ultra-Sparse Label Semi-supervised Regression for
Multi-dimensional Seismic Inversion [7.356328937024184]
ContrasInver is a method that achieves seismic inversion using as few as two or three well logs.
In experiments, ContrasInver achieved state-of-the-art performance in the synthetic data SEAM I.
It's the first data-driven approach yielding reliable results on the Netherlands F3 and Delft, using only three and two well logs respectively.
arXiv Detail & Related papers (2023-02-13T15:19:51Z) - Fine-grained Correlation Loss for Regression [20.175415393263037]
We propose to revisit the classic regression tasks with novel investigations on directly optimizing the fine-grained correlation losses.
We extensively validate our method on two typical ultrasound image regression tasks, including the image quality assessment and bio-metric measurement.
arXiv Detail & Related papers (2022-07-01T11:25:50Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data [8.115323786541078]
We aim to improve the accuracy of the regression analysis by addressing the data skewness/bias during model training.
We propose a Variation-Incentive Loss re-weighting method (VILoss) to optimize the gradient descent-based model training for regression analysis.
arXiv Detail & Related papers (2021-09-14T10:22:21Z) - Provable Guarantees for Self-Supervised Deep Learning with Spectral
Contrastive Loss [72.62029620566925]
Recent works in self-supervised learning have advanced the state-of-the-art by relying on the contrastive learning paradigm.
Our work analyzes contrastive learning without assuming conditional independence of positive pairs.
We propose a loss that performs spectral decomposition on the population augmentation graph and can be succinctly written as a contrastive learning objective.
arXiv Detail & Related papers (2021-06-08T07:41:02Z) - Robust Locality-Aware Regression for Labeled Data Classification [5.432221650286726]
We propose a new discriminant feature extraction framework, namely Robust Locality-Aware Regression (RLAR)
In our model, we introduce a retargeted regression to perform the marginal representation learning adaptively instead of using the general average inter-class margin.
To alleviate the disturbance of outliers and prevent overfitting, we measure the regression term and locality-aware term together with the regularization term by the L2,1 norm.
arXiv Detail & Related papers (2020-06-15T11:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.