論文の概要: ViGoR: Improving Visual Grounding of Large Vision Language Models with
Fine-Grained Reward Modeling
- arxiv url: http://arxiv.org/abs/2402.06118v1
- Date: Fri, 9 Feb 2024 01:00:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 18:15:44.424516
- Title: ViGoR: Improving Visual Grounding of Large Vision Language Models with
Fine-Grained Reward Modeling
- Title(参考訳): ViGoR:細粒リワードモデリングによる大規模視覚言語モデルの視覚的グラウンド化の改善
- Authors: Siming Yan, Min Bai, Weifeng Chen, Xiong Zhou, Qixing Huang, Li Erran
Li
- Abstract要約: 大規模視覚言語モデル(LVLM)は、実世界では前例のない推論能力を示している。
生成されたテキストは、しばしば視覚入力の不正確な接地に悩まされ、既存のシーン要素を幻覚させるなどのエラーが発生する。
我々は,LVLMの視覚的グラウンド化を大幅に向上させるために,細粒度報酬モデリングを利用した新しいフレームワークViGoRを提案する。
- 参考スコア(独自算出の注目度): 37.19116437843919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By combining natural language understanding and the generation capabilities
and breadth of knowledge of large language models with image perception, recent
large vision language models (LVLMs) have shown unprecedented reasoning
capabilities in the real world. However, the generated text often suffers from
inaccurate grounding in the visual input, resulting in errors such as
hallucinating nonexistent scene elements, missing significant parts of the
scene, and inferring incorrect attributes and relationships between objects. To
address these issues, we introduce a novel framework, ViGoR (Visual Grounding
Through Fine-Grained Reward Modeling) that utilizes fine-grained reward
modeling to significantly enhance the visual grounding of LVLMs over
pre-trained baselines. This improvement is efficiently achieved using much
cheaper human evaluations instead of full supervisions, as well as automated
methods. We show the effectiveness of our approach through numerous metrics on
several benchmarks. Additionally, we construct a comprehensive and challenging
dataset specifically designed to validate the visual grounding capabilities of
LVLMs. Finally, we plan to release our human annotation comprising
approximately 16,000 images and generated text pairs with fine-grained
evaluations to contribute to related research in the community.
- Abstract(参考訳): 近年の大規模視覚言語モデル(LVLM)は,自然言語理解と大規模言語モデルの生成能力と画像認識の知識の広さを組み合わせることで,実世界では前例のない推論能力を示した。
しかし、生成したテキストは視覚入力における不正確な接地に悩まされることが多く、その結果、既存のシーン要素の幻覚、シーンの重要な部分の欠如、不正確な属性とオブジェクト間の関係の推測などのエラーが発生する。
これらの課題に対処するために, 微粒な報酬モデルを用いて, 事前学習ベースライン上でのLVLMの視覚的グラウンド化を著しく向上する新しいフレームワークViGoRを導入する。
この改善は、完全な監督ではなく、はるかに安価な人的評価と自動化手法によって効率よく達成される。
いくつかのベンチマークで多くの指標を用いて,本手法の有効性を示す。
さらに,LVLMの視覚的接地能力を検証するために,包括的で困難なデータセットを構築した。
最後に,約16,000枚の画像と生成したテキストペアからなる人間アノテーションをリリースし,コミュニティの関連研究に寄与する予定である。
関連論文リスト
- LanGWM: Language Grounded World Model [24.86620763902546]
我々は,世界モデル学習を強化するために,言語による視覚的特徴を学習することに注力する。
提案手法は,人間とロボットの相互作用モデルを改善する可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-29T12:41:55Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
現代のニューラル言語モデル(LM)は、人間の文の生成と理解をモデル化するための強力なツールである。
しかし、これらの結果を得るためには、LMは明らかに非人間的な方法で訓練されなければならない。
より自然主義的に訓練されたモデルは、より人間らしい言語学習を示すのか?
本稿では,言語習得における重要なサブタスクである単語学習の文脈において,この問題を考察する。
論文 参考訳(メタデータ) (2023-10-20T03:33:36Z) - Towards Grounded Visual Spatial Reasoning in Multi-Modal Vision Language
Models [3.86170450233149]
画像とテキストとのマッチングを訓練した大規模視覚言語モデル(VLM)では,空間的関係の微妙な理解が欠如していることが示されている。
本稿では,空間的節の認識とランク付けのための,よりきめ細かな構成的アプローチを提案する。
論文 参考訳(メタデータ) (2023-08-18T18:58:54Z) - Visually-Situated Natural Language Understanding with Contrastive
Reading Model and Frozen Large Language Models [24.456117679941816]
Contrastive Reading Model (Cream)は、Large Language Models (LLM)の言語画像理解能力を高めるために設計された、新しいニューラルネットワークである。
我々のアプローチは、視覚と言語理解のギャップを埋め、より洗練されたドキュメントインテリジェンスアシスタントの開発の道を開く。
論文 参考訳(メタデータ) (2023-05-24T11:59:13Z) - Re-ViLM: Retrieval-Augmented Visual Language Model for Zero and Few-Shot
Image Captioning [153.98100182439165]
本稿では,Flamingo上に構築されたRetrieval-augmented Visual Language Model,Re-ViLMを紹介する。
外部データベースに特定の知識を明示的に格納することで、モデルパラメータの数を減らすことができる。
Re-ViLMは画像・テキスト生成タスクの性能を大幅に向上させることを示した。
論文 参考訳(メタデータ) (2023-02-09T18:57:56Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
既存の視覚・言語モデルと視覚のみのモデルにおける視覚表現の比較分析を行う。
我々の経験的観察は、視覚・言語モデルがラベル予測タスクに優れていることを示唆している。
我々の研究は、視覚学習における言語の役割に光を当て、様々な事前学習モデルの実証的なガイドとして機能することを願っている。
論文 参考訳(メタデータ) (2022-12-01T05:00:18Z) - Visually-Augmented Language Modeling [137.36789885105642]
本稿では,言語モデリングのための関連画像を含むテキストトークンを視覚的に拡張する,VaLMという新しい事前学習フレームワークを提案する。
視覚的に拡張されたコンテキストでは、VaLMは視覚知識融合層を使用してマルチモーダル基底言語モデリングを可能にする。
視覚情報を必要とする多モーダル・コモンセンス推論タスクについて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2022-05-20T13:41:12Z) - Align before Fuse: Vision and Language Representation Learning with
Momentum Distillation [52.40490994871753]
本稿では,ALBEF (BEfore Fusing) の表現に対して,モーダルな注意を通したコントラスト的損失を導入する。
本研究では,運動量モデルで生成した擬似ターゲットから学習する自己学習法である運動量蒸留を提案する。
ALBEFは、複数の下流視覚言語タスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-07-16T00:19:22Z) - VidLanKD: Improving Language Understanding via Video-Distilled Knowledge
Transfer [76.3906723777229]
言語理解を改善するためのビデオ言語知識蒸留法VidLanKDを提案する。
我々は、ビデオテキストデータセット上でマルチモーダル教師モデルを訓練し、その知識をテキストデータセットを用いて学生言語モデルに伝達する。
我々の実験では、VidLanKDはテキストのみの言語モデルや発声モデルよりも一貫した改善を実現している。
論文 参考訳(メタデータ) (2021-07-06T15:41:32Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。