Multi-source-free Domain Adaptation via Uncertainty-aware Adaptive
Distillation
- URL: http://arxiv.org/abs/2402.06213v1
- Date: Fri, 9 Feb 2024 06:48:04 GMT
- Title: Multi-source-free Domain Adaptation via Uncertainty-aware Adaptive
Distillation
- Authors: Yaxuan Song, Jianan Fan, Dongnan Liu, Weidong Cai
- Abstract summary: Source-free domain adaptation (SFDA) alleviates the domain discrepancy among data obtained from domains without accessing the data for the awareness of data privacy.
We propose Uncertainty-aware Adaptive Distillation (UAD) for the multi-source-free unsupervised domain adaptation setting.
- Score: 8.791916654073088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Source-free domain adaptation (SFDA) alleviates the domain discrepancy among
data obtained from domains without accessing the data for the awareness of data
privacy. However, existing conventional SFDA methods face inherent limitations
in medical contexts, where medical data are typically collected from multiple
institutions using various equipment. To address this problem, we propose a
simple yet effective method, named Uncertainty-aware Adaptive Distillation
(UAD) for the multi-source-free unsupervised domain adaptation (MSFDA) setting.
UAD aims to perform well-calibrated knowledge distillation from (i) model level
to deliver coordinated and reliable base model initialisation and (ii) instance
level via model adaptation guided by high-quality pseudo-labels, thereby
obtaining a high-performance target domain model. To verify its general
applicability, we evaluate UAD on two image-based diagnosis benchmarks among
two multi-centre datasets, where our method shows a significant performance
gain compared with existing works. The code will be available soon.
Related papers
- Unveiling the Superior Paradigm: A Comparative Study of Source-Free Domain Adaptation and Unsupervised Domain Adaptation [52.36436121884317]
We show that Source-Free Domain Adaptation (SFDA) generally outperforms Unsupervised Domain Adaptation (UDA) in real-world scenarios.
SFDA offers advantages in time efficiency, storage requirements, targeted learning objectives, reduced risk of negative transfer, and increased robustness against overfitting.
We propose a novel weight estimation method that effectively integrates available source data into multi-SFDA approaches.
arXiv Detail & Related papers (2024-11-24T13:49:29Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
Adapting a deep learning model to a specific target individual is a challenging facial expression recognition task.
This paper introduces a new MSDA method for subject-based domain adaptation in FER.
It efficiently leverages information from multiple source subjects to adapt a deep FER model to a single target individual.
arXiv Detail & Related papers (2023-12-09T18:40:37Z) - Weighted Joint Maximum Mean Discrepancy Enabled
Multi-Source-Multi-Target Unsupervised Domain Adaptation Fault Diagnosis [15.56929064706769]
We propose a weighted joint maximum mean discrepancy enabled multi-source-multi-target unsupervised domain adaptation (WJMMD-MDA)
The proposed method extracts sufficient information from multiple labeled source domains and achieves domain alignment between source and target domains.
The performance of the proposed method is evaluated in comprehensive comparative experiments on three datasets.
arXiv Detail & Related papers (2023-10-20T16:53:31Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - Achieving Reliable and Fair Skin Lesion Diagnosis via Unsupervised Domain Adaptation [43.1078084014722]
Unsupervised domain adaptation (UDA) can integrate large external datasets for developing reliable classifiers.
UDA can effectively mitigate bias against minority groups and enhance fairness in diagnostic systems.
arXiv Detail & Related papers (2023-07-06T17:32:38Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - UMAD: Universal Model Adaptation under Domain and Category Shift [138.12678159620248]
Universal Model ADaptation (UMAD) framework handles both UDA scenarios without access to source data.
We develop an informative consistency score to help distinguish unknown samples from known samples.
Experiments on open-set and open-partial-set UDA scenarios demonstrate that UMAD exhibits comparable, if not superior, performance to state-of-the-art data-dependent methods.
arXiv Detail & Related papers (2021-12-16T01:22:59Z) - Unsupervised Multi-Source Domain Adaptation for Person Re-Identification [39.817734080890695]
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data.
We introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training.
The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.
arXiv Detail & Related papers (2021-04-27T03:33:35Z) - Towards Inheritable Models for Open-Set Domain Adaptation [56.930641754944915]
We introduce a practical Domain Adaptation paradigm where a source-trained model is used to facilitate adaptation in the absence of the source dataset in future.
We present an objective way to quantify inheritability to enable the selection of the most suitable source model for a given target domain, even in the absence of the source data.
arXiv Detail & Related papers (2020-04-09T07:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.