Detecting the dimensionality of genuine multi-particle entanglement
- URL: http://arxiv.org/abs/2402.06234v4
- Date: Wed, 21 Aug 2024 08:03:40 GMT
- Title: Detecting the dimensionality of genuine multi-particle entanglement
- Authors: Gabriele Cobucci, Armin Tavakoli,
- Abstract summary: State-of-the-art quantum technology is becoming increasingly able to create entangled states that feature many particles and high dimension.
Here, we investigate generic states that can be considered both genuinely high-dimensional and genuine multi-particle entangled.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex forms of quantum entanglement can arise in two qualitatively different ways; either between many qubits or between two particles with higher-than-qubit dimension. While the many-qubit frontier and the high-dimension frontier both are well-established, state-of-the-art quantum technology is becoming increasingly able to create and manipulate entangled states that simltaneously feature many particles and high dimension. Here, we investigate generic states that can be considered both genuinely high-dimensional and genuine multi-particle entangled. We consider a natural quantity that characterises this key property. To detect it, we develop three different classes of criteria. These enable us both to probe the ultimate noise tolerance of this form of entanglement and to make detection schemes using sparse or even minimal measurement resources. The approach provides a simple way of benchmarking entanglement dimensionality in the multi-particle regime and general, platform-independent, detection methods that readily apply to experimental use.
Related papers
- Scalable multipartite entanglement criteria for continuous variables [6.181008505226926]
We propose a quite general entanglement detection method for all kinds of multipartite entanglement of multimode continuous variable systems.
Our criterion can detect entanglement, genuine entanglement and other kinds of inseparabilities almost imidiately.
arXiv Detail & Related papers (2024-11-05T13:27:19Z) - A nonlinear criterion for characterizing high-dimensional multipartite entanglement [1.8749305679160366]
We derive a nonlinear criterion that can be used to lower bound the dimensionality vector of mixed quantum states.
We test our condition on paradigmatic classes of high-dimensional multipartite entangled states like imperfect Greenberger-Horne-Zeilinger (GHZ) states.
arXiv Detail & Related papers (2024-05-06T08:33:46Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Detecting entanglement in quantum many-body systems via permutation
moments [4.376631240407246]
We propose a framework for designing multipartite entanglement criteria based on permutation moments.
These criteria show strong detection capability in the multi-qubit Ising model with a long-range $XY$ Hamiltonian.
Our framework can also be generalized to detect the much more complicated entanglement structure in quantum many-body systems.
arXiv Detail & Related papers (2022-03-16T04:39:54Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Multipartite spatial entanglement generated by concurrent nonlinear
processes [91.3755431537592]
Continuous variables multipartite entanglement is a key resource for quantum technologies.
This work considers the multipartite entanglement generated in separated spatial modes of the same light beam by three different parametric sources.
arXiv Detail & Related papers (2021-11-09T17:15:13Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Certification of Genuine Multipartite Entanglement with General and
Robust Device-independent Witnesses [11.468122934770788]
Genuine multipartite entanglement represents the strongest type of entanglement, which is an essential resource for quantum information processing.
Standard methods to detect genuine multipartite entanglement require full knowledge of the Hilbert space dimension and precise calibration of measurement devices.
In this work, we explore a general and robust DI method which can be applied to various realistic multipartite quantum state in arbitrary finite dimension.
arXiv Detail & Related papers (2021-08-29T07:15:45Z) - Optimized detection of high-dimensional entanglement [1.6179087103822984]
Entanglement detection is one of the most conventional tasks in quantum information processing.
We introduce a highly flexible automated method to construct optimal tests for entanglement detection.
We experimentally certify 2- and 3-unfaithful entanglement in 4-dimensional photonic states.
arXiv Detail & Related papers (2020-11-04T10:38:45Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.