A nonlinear criterion for characterizing high-dimensional multipartite entanglement
- URL: http://arxiv.org/abs/2405.03261v1
- Date: Mon, 6 May 2024 08:33:46 GMT
- Title: A nonlinear criterion for characterizing high-dimensional multipartite entanglement
- Authors: Shuheng Liu, Qiongyi He, Marcus Huber, Giuseppe Vitagliano,
- Abstract summary: We derive a nonlinear criterion that can be used to lower bound the dimensionality vector of mixed quantum states.
We test our condition on paradigmatic classes of high-dimensional multipartite entangled states like imperfect Greenberger-Horne-Zeilinger (GHZ) states.
- Score: 1.8749305679160366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding entanglement of potentially high-dimensional multipartite quantum systems is crucial across different disciplines in quantum sciences. We take inspiration from covariance matrix based techniques to derive a nonlinear criterion that can be used to lower bound the dimensionality vector of mixed quantum states, revealing both the level of multipartiteness and the dimensionality of the entanglement in the quantum states. The technique is based on a system of inequalities that has to be satisfied by all quantum states with a given entanglement dimensionality vector, which can be checked via linear programming. We test our condition on paradigmatic classes of high-dimensional multipartite entangled states like imperfect Greenberger-Horne-Zeilinger (GHZ) states and find that, in comparison with other available criteria our method provides a significant advantage, which is enhanced especially in the case that the dimensions of the individual particles are different from each other.
Related papers
- Scalable multipartite entanglement criteria for continuous variables [6.181008505226926]
We propose a quite general entanglement detection method for all kinds of multipartite entanglement of multimode continuous variable systems.
Our criterion can detect entanglement, genuine entanglement and other kinds of inseparabilities almost imidiately.
arXiv Detail & Related papers (2024-11-05T13:27:19Z) - Detecting the dimensionality of genuine multi-particle entanglement [0.0]
State-of-the-art quantum technology is becoming increasingly able to create entangled states that feature many particles and high dimension.
Here, we investigate generic states that can be considered both genuinely high-dimensional and genuine multi-particle entangled.
arXiv Detail & Related papers (2024-02-09T08:03:05Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Detecting entanglement in quantum many-body systems via permutation
moments [4.376631240407246]
We propose a framework for designing multipartite entanglement criteria based on permutation moments.
These criteria show strong detection capability in the multi-qubit Ising model with a long-range $XY$ Hamiltonian.
Our framework can also be generalized to detect the much more complicated entanglement structure in quantum many-body systems.
arXiv Detail & Related papers (2022-03-16T04:39:54Z) - Antilinear superoperator, quantum geometric invariance, and antilinear symmetry for higher-dimensional quantum systems [2.9460813774467347]
We study several crucial classes of antilinear superoperators, including antilinear quantum channels, antilinearly unital superoperators, and generalized $Theta$-conjugation.
The strong and weak antilinear superoperator symmetries of the open quantum system are also discussed.
arXiv Detail & Related papers (2022-02-22T15:45:08Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Filtering of higher-dimensional entanglement networks using information
volumes [0.0]
We introduce a novel geometric approach to characterize entanglement relations in large quantum systems.
Our approach is inspired by Schumacher's singlet state triangle inequality, which used an entropic-based distance to capture the strange properties of entanglement.
arXiv Detail & Related papers (2021-06-23T16:24:44Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.