論文の概要: YAMLE: Yet Another Machine Learning Environment
- arxiv url: http://arxiv.org/abs/2402.06268v1
- Date: Fri, 9 Feb 2024 09:34:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 17:29:31.867671
- Title: YAMLE: Yet Another Machine Learning Environment
- Title(参考訳): YAMLE: もう1つの機械学習環境
- Authors: Martin Ferianc, Miguel Rodrigues
- Abstract要約: YAMLEはオープンソースのフレームワークで、機械学習(ML)モデルとメソッドによる迅速なプロトタイピングと実験を容易にする。
YAMLEにはコマンドラインインターフェースと、人気があり保守状態の良いPyTorchベースのライブラリとの統合が含まれている。
YAMLEの目標は、研究者や実践者が既存の実装を素早く構築し比較できる共有エコシステムに成長することだ。
- 参考スコア(独自算出の注目度): 4.985768723667417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: YAMLE: Yet Another Machine Learning Environment is an open-source framework
that facilitates rapid prototyping and experimentation with machine learning
(ML) models and methods. The key motivation is to reduce repetitive work when
implementing new approaches and improve reproducibility in ML research. YAMLE
includes a command-line interface and integrations with popular and
well-maintained PyTorch-based libraries to streamline training, hyperparameter
optimisation, and logging. The ambition for YAMLE is to grow into a shared
ecosystem where researchers and practitioners can quickly build on and compare
existing implementations. Find it at: https://github.com/martinferianc/yamle.
- Abstract(参考訳): YAMLE: Another Machine Learning Environmentはオープンソースのフレームワークで、機械学習(ML)モデルとメソッドによる迅速なプロトタイピングと実験を容易にする。
重要な動機は、新しいアプローチを実装する際の反復作業の削減と、ml研究における再現性の向上にある。
YAMLEにはコマンドラインインターフェースと、トレーニングの合理化、ハイパーパラメータの最適化、ロギングを行うPyTorchベースのライブラリとの統合が含まれている。
YAMLEの目標は、研究者や実践者が既存の実装を素早く構築し比較できる共有エコシステムに成長することだ。
https://github.com/martinferianc/yamle
関連論文リスト
- ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
非専門家による直感的なロボットプログラミングのためのフレームワークを提案する。
ロボットオペレーティングシステム(ROS)からの自然言語のプロンプトと文脈情報を活用する
我々のシステムは,大規模言語モデル (LLM) を統合し,非専門家がチャットインタフェースを通じてシステムにタスク要求を記述できるようにする。
論文 参考訳(メタデータ) (2024-06-28T08:28:38Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeLは継続学習のためのライブラリで、PyTorchとJAXフレームワークの両方をサポートする。
それは、正規化ベースのアプローチ、リプレイベースのアプローチ、ハイブリッドアプローチを含む、幅広い連続学習アルゴリズムのための統一インターフェースを提供する。
私たちはSequeLをオープンソースライブラリとしてリリースし、研究者や開発者が自身の目的で簡単にライブラリを実験し拡張することができます。
論文 参考訳(メタデータ) (2023-04-21T10:00:22Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - PyRelationAL: A Library for Active Learning Research and Development [0.11545092788508224]
PyRelationALは、アクティブラーニング(AL)研究のためのオープンソースライブラリである。
既存の文献に基づいたベンチマークデータセットとALタスク設定へのアクセスを提供する。
我々は、ベンチマークデータセットのPyRelationALコレクションの実験を行い、ALが提供できる相当な経済状況を示す。
論文 参考訳(メタデータ) (2022-05-23T08:21:21Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
深部強化学習(DRL)のサンプル効率と最終性能を向上させるために,各種自動カリキュラム学習(ACL)手法が提案されている。
本稿では,多目的だがコヒーレントなカリキュラムを作成するための統合された自動カリキュラム学習フレームワークを提案する。
既存の手設計のカリキュラムパラダイムに加えて,抽象カリキュラムを学習するためのフレキシブルなメモリ機構を設計する。
論文 参考訳(メタデータ) (2021-10-06T19:30:25Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learnは視覚表現学習のための自己指導型のメソッドのライブラリである。
Pythonで実装され、PytorchとPytorch Lightningを使用して、このライブラリは研究と業界のニーズの両方に適合する。
論文 参考訳(メタデータ) (2021-08-03T22:19:55Z) - Enabling Un-/Semi-Supervised Machine Learning for MDSE of the Real-World
CPS/IoT Applications [0.5156484100374059]
我々は、スマートサイバー物理システム(CPS)とIoT(Internet of Things)の現実的なユースケースシナリオに対して、ドメイン固有モデル駆動ソフトウェアエンジニアリング(MDSE)をサポートする新しいアプローチを提案する。
人工知能(AI)の本質において利用可能なデータの大部分はラベルが付けられていないと我々は主張する。したがって、教師なしおよび/または半教師なしのMLアプローチが実践的な選択である。
提案手法は,既存の最先端MDSEツールと完全に実装され,CPS/IoTドメインを提供する。
論文 参考訳(メタデータ) (2021-07-06T15:51:39Z) - MLGO: a Machine Learning Guided Compiler Optimizations Framework [0.0]
この作業は、実際の設定で複雑なコンパイラパスで機械学習を初めて完全に統合した作業です。
インライン・フォー・サイズモデルのトレーニングには2つの異なるMLアルゴリズムを使用し、最大7%の削減を実現している。
同じモデルは、実世界のターゲットの多様性、そして数ヶ月のアクティブな開発の後、同じターゲットセットにうまく一般化します。
論文 参考訳(メタデータ) (2021-01-13T00:02:49Z) - NLPGym -- A toolkit for evaluating RL agents on Natural Language
Processing Tasks [2.5760935151452067]
NLPGymはオープンソースのPythonツールキットで、標準のNLPタスクに対してインタラクティブなテキスト環境を提供する。
研究の基盤となるRLアルゴリズムの異なる6つのタスクについて実験を行った。
論文 参考訳(メタデータ) (2020-11-16T20:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。