Controllable seismic velocity synthesis using generative diffusion models
- URL: http://arxiv.org/abs/2402.06277v2
- Date: Fri, 9 Aug 2024 13:37:48 GMT
- Title: Controllable seismic velocity synthesis using generative diffusion models
- Authors: Fu Wang, Xinquan Huang, Tariq Alkhalifah,
- Abstract summary: We propose conditional generative diffusion models for seismic velocity synthesis.
This approach enables the generation of seismic velocities that closely match the expected target distribution.
We demonstrate the flexibility and effectiveness of our method through training diffusion models on the OpenFWI dataset.
- Score: 4.2193475197905705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate seismic velocity estimations are vital to understanding Earth's subsurface structures, assessing natural resources, and evaluating seismic hazards. Machine learning-based inversion algorithms have shown promising performance in regional (i.e., for exploration) and global velocity estimation, while their effectiveness hinges on access to large and diverse training datasets whose distributions generally cover the target solutions. Additionally, enhancing the precision and reliability of velocity estimation also requires incorporating prior information, e.g., geological classes, well logs, and subsurface structures, but current statistical or neural network-based methods are not flexible enough to handle such multi-modal information. To address both challenges, we propose to use conditional generative diffusion models for seismic velocity synthesis, in which we readily incorporate those priors. This approach enables the generation of seismic velocities that closely match the expected target distribution, offering datasets informed by both expert knowledge and measured data to support training for data-driven geophysical methods. We demonstrate the flexibility and effectiveness of our method through training diffusion models on the OpenFWI dataset under various conditions, including class labels, well logs, reflectivity images, and the combination of these priors. The performance of the approach under out-of-distribution conditions further underscores its generalization ability, showcasing its potential to provide tailored priors for velocity inverse problems and create specific training datasets for machine learning-based geophysical applications.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Elastic Full-Waveform Inversion : How the physics of problem improves data-driven techniques? [0.0]
Full-Waveform Inversion (FWI) is a nonlinear iterative seismic imaging technique.
FWI can produce detailed estimates of subsurface geophysical properties.
The strong nonlinearity of FWI can trap the optimization in local minima.
We propose methods for the solution of time-harmonic FWI to enhance accuracy compared to pure data-driven approaches.
arXiv Detail & Related papers (2024-06-04T11:30:40Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Generative Geostatistical Modeling from Incomplete Well and Imaged Seismic Observations with Diffusion Models [0.24578723416255752]
We introduce a novel approach to synthesizing subsurface velocity models using diffusion generative models.
Our method leverages incomplete well and seismic observations to produce high-fidelity velocity samples without requiring fully sampled training datasets.
arXiv Detail & Related papers (2024-05-16T20:30:43Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
We introduce a conditional diffusion framework called C$2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information.
Our experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-18T11:59:04Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Transfer learning to improve streamflow forecasts in data sparse regions [0.0]
We study the methodology behind Transfer Learning (TL) through fine-tuning and parameter transferring for better generalization performance of streamflow prediction in data-sparse regions.
We propose a standard recurrent neural network in the form of Long Short-Term Memory (LSTM) to fit on a sufficiently large source domain dataset.
We present a methodology to implement transfer learning approaches for hydrologic applications by separating the spatial and temporal components of the model and training the model to generalize.
arXiv Detail & Related papers (2021-12-06T14:52:53Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Data-driven Full-waveform Inversion Surrogate using Conditional
Generative Adversarial Networks [0.0]
Full-waveform inversion (FWI) velocity modeling is an iterative advanced technique that provides an accurate and detailed velocity field model.
In this study, we propose a method of generating velocity field models, as detailed as those obtained through FWI, using a conditional generative adversarial network (cGAN) with multiple inputs.
arXiv Detail & Related papers (2021-04-30T21:41:24Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.