FedMIA: An Effective Membership Inference Attack Exploiting "All for One" Principle in Federated Learning
- URL: http://arxiv.org/abs/2402.06289v2
- Date: Fri, 03 Jan 2025 07:10:28 GMT
- Title: FedMIA: An Effective Membership Inference Attack Exploiting "All for One" Principle in Federated Learning
- Authors: Gongxi Zhu, Donghao Li, Hanlin Gu, Yuan Yao, Lixin Fan, Yuxing Han,
- Abstract summary: Federated Learning (FL) is a promising approach for training machine learning models on decentralized data.<n>Membership Inference Attacks (MIAs) aim to determine whether a specific data point belongs to a target client's training set.<n>We introduce a three-step Membership Inference Attack (MIA) method, called FedMIA, which follows the "all for one"--leveraging updates from all clients across multiple communication rounds to enhance MIA effectiveness.
- Score: 17.141646895576145
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) is a promising approach for training machine learning models on decentralized data while preserving privacy. However, privacy risks, particularly Membership Inference Attacks (MIAs), which aim to determine whether a specific data point belongs to a target client's training set, remain a significant concern. Existing methods for implementing MIAs in FL primarily analyze updates from the target client, focusing on metrics such as loss, gradient norm, and gradient difference. However, these methods fail to leverage updates from non-target clients, potentially underutilizing available information. In this paper, we first formulate a one-tailed likelihood-ratio hypothesis test based on the likelihood of updates from non-target clients. Building upon this formulation, we introduce a three-step Membership Inference Attack (MIA) method, called FedMIA, which follows the "all for one"--leveraging updates from all clients across multiple communication rounds to enhance MIA effectiveness. Both theoretical analysis and extensive experimental results demonstrate that FedMIA outperforms existing MIAs in both classification and generative tasks. Additionally, it can be integrated as an extension to existing methods and is robust against various defense strategies, Non-IID data, and different federated structures. Our code is available in https://github.com/Liar-Mask/FedMIA.
Related papers
- Privacy Preserving and Robust Aggregation for Cross-Silo Federated Learning in Non-IID Settings [1.8434042562191815]
Federated Averaging remains the most widely used aggregation strategy in federated learning.
Our method relies solely on gradient updates, eliminating the need for any additional client metadata.
Our results establish the effectiveness of gradient masking as a practical and secure solution for federated learning.
arXiv Detail & Related papers (2025-03-06T14:06:20Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - Dual-Model Defense: Safeguarding Diffusion Models from Membership Inference Attacks through Disjoint Data Splitting [6.984396318800444]
Diffusion models have been proven to be vulnerable to Membership Inference Attacks (MIAs)
This paper introduces two novel and efficient approaches to protect diffusion models against MIAs.
arXiv Detail & Related papers (2024-10-22T03:02:29Z) - Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
Membership inference attacks (MIAs) aim to determine whether a specific instance was part of a target model's training data.
Applying MIAs to large language models (LLMs) presents unique challenges due to the massive scale of pre-training data and the ambiguous nature of membership.
We introduce EM-MIA, a novel MIA method for LLMs that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm.
arXiv Detail & Related papers (2024-10-10T03:31:16Z) - MIA-BAD: An Approach for Enhancing Membership Inference Attack and its
Mitigation with Federated Learning [6.510488168434277]
The membership inference attack (MIA) is a popular paradigm for compromising the privacy of a machine learning (ML) model.
We propose an enhanced Membership Inference Attack with the Batch-wise generated Attack dataset (MIA-BAD)
We show how training an ML model through FL, has some distinct advantages and investigate how the threat introduced with the proposed MIA-BAD approach can be mitigated with FL approaches.
arXiv Detail & Related papers (2023-11-28T06:51:26Z) - Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration [32.15773300068426]
Membership Inference Attacks aim to infer whether a target data record has been utilized for model training.
We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA)
arXiv Detail & Related papers (2023-11-10T13:55:05Z) - Practical Membership Inference Attacks Against Large-Scale Multi-Modal
Models: A Pilot Study [17.421886085918608]
Membership inference attacks (MIAs) aim to infer whether a data point has been used to train a machine learning model.
These attacks can be employed to identify potential privacy vulnerabilities and detect unauthorized use of personal data.
This paper takes a first step towards developing practical MIAs against large-scale multi-modal models.
arXiv Detail & Related papers (2023-09-29T19:38:40Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z) - Improving Robustness to Model Inversion Attacks via Mutual Information
Regularization [12.079281416410227]
This paper studies defense mechanisms against model inversion (MI) attacks.
MI is a type of privacy attacks aimed at inferring information about the training data distribution given the access to a target machine learning model.
We propose the Mutual Information Regularization based Defense (MID) against MI attacks.
arXiv Detail & Related papers (2020-09-11T06:02:44Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
We propose new MI attacks to utilize the information of augmented data.
We establish the optimal membership inference when the model is trained with augmented data.
arXiv Detail & Related papers (2020-07-21T02:21:10Z) - On the Effectiveness of Regularization Against Membership Inference
Attacks [26.137849584503222]
Deep learning models often raise privacy concerns as they leak information about their training data.
This enables an adversary to determine whether a data point was in a model's training set by conducting a membership inference attack (MIA)
While many regularization mechanisms exist, their effectiveness against MIAs has not been studied systematically.
arXiv Detail & Related papers (2020-06-09T15:17:21Z) - A Framework for Evaluating Gradient Leakage Attacks in Federated
Learning [14.134217287912008]
Federated learning (FL) is an emerging distributed machine learning framework for collaborative model training with a network of clients.
Recent studies have shown that even sharing local parameter updates from a client to the federated server may be susceptible to gradient leakage attacks.
We present a principled framework for evaluating and comparing different forms of client privacy leakage attacks.
arXiv Detail & Related papers (2020-04-22T05:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.