V-STaR: Training Verifiers for Self-Taught Reasoners
- URL: http://arxiv.org/abs/2402.06457v2
- Date: Wed, 14 Aug 2024 02:41:48 GMT
- Title: V-STaR: Training Verifiers for Self-Taught Reasoners
- Authors: Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, Rishabh Agarwal,
- Abstract summary: V-STaR trains a verifier using DPO that judges correctness of model-generated solutions.
Running V-STaR for multiple iterations results in progressively better reasoners and verifiers.
- Score: 71.53113558733227
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Common self-improvement approaches for large language models (LLMs), such as STaR, iteratively fine-tune LLMs on self-generated solutions to improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
Related papers
- Rationale-Aware Answer Verification by Pairwise Self-Evaluation [11.763229353978321]
We show that training reliable verifiers requires ensuring the validity of rationales in addition to the correctness of the final answers.
Our results suggest that training reliable verifiers requires ensuring the validity of rationales in addition to the correctness of the final answers.
arXiv Detail & Related papers (2024-10-07T08:53:00Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - MAgICoRe: Multi-Agent, Iterative, Coarse-to-Fine Refinement for Reasoning [60.55556283848063]
Large Language Models' (LLM) reasoning can be improved using test-time aggregation strategies, i.e., generating multiple samples and voting among generated samples.
Refinement offers an alternative by using LLM-generated feedback to improve solution quality.
We propose MAgICoRe, which avoids excessive refinement by categorizing problem difficulty as easy or hard.
arXiv Detail & Related papers (2024-09-18T17:12:41Z) - Generative Verifiers: Reward Modeling as Next-Token Prediction [29.543787728397643]
Verifiers or reward models are often used to enhance the reasoning performance of large language models (LLMs)
We propose training verifiers using the ubiquitous next-token prediction objective, jointly on verification and solution generation.
We demonstrate that GenRM outperforms discriminative, DPO verifiers, and LLM-as-a-Judge.
arXiv Detail & Related papers (2024-08-27T17:57:45Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs)
This work explores whether small (= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs.
arXiv Detail & Related papers (2024-04-26T03:41:28Z) - A Mutual Information Maximization Approach for the Spurious Solution
Problem in Weakly Supervised Question Answering [60.768146126094955]
Weakly supervised question answering usually has only the final answers as supervision signals.
There may exist many spurious solutions that coincidentally derive the correct answer, but training on such solutions can hurt model performance.
We propose to explicitly exploit such semantic correlations by maximizing the mutual information between question-answer pairs and predicted solutions.
arXiv Detail & Related papers (2021-06-14T05:47:41Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.