Scalable Best-of-N Selection for Large Language Models via Self-Certainty
- URL: http://arxiv.org/abs/2502.18581v1
- Date: Tue, 25 Feb 2025 19:08:07 GMT
- Title: Scalable Best-of-N Selection for Large Language Models via Self-Certainty
- Authors: Zhewei Kang, Xuandong Zhao, Dawn Song,
- Abstract summary: Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models.<n>We propose self-certainty, a novel and efficient metric to estimate response quality without requiring external reward models.<n>Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities.
- Score: 65.31658824274894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models (LLMs) through increased test-time computation. Current state-of-the-art methods often employ computationally intensive reward models for response evaluation and selection. Reward-free alternatives, like self-consistency and universal self-consistency, are limited in their ability to handle open-ended generation tasks or scale effectively. To address these limitations, we propose self-certainty, a novel and efficient metric that leverages the inherent probability distribution of LLM outputs to estimate response quality without requiring external reward models. We hypothesize that higher distributional self-certainty, aggregated across multiple samples, correlates with improved response accuracy, as it reflects greater confidence in the generated output. Through extensive experiments on various reasoning tasks, we demonstrate that self-certainty (1) scales effectively with increasing sample size $N$, akin to reward models but without the computational overhead; (2) complements chain-of-thought, improving reasoning performance beyond greedy decoding; and (3) generalizes to open-ended tasks where traditional self-consistency methods fall short. Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities. The code is available at https://github.com/backprop07/Self-Certainty
Related papers
- Efficient Test-Time Scaling via Self-Calibration [18.32718448734639]
Best-of-N sampling and Self-Consistency with majority voting are simple and effective, but require a fixed number of sampling responses for each query.
This could result in wasted computation for simpler questions and insufficient exploration for more challenging ones.
We argue that model confidence of responses can be used for improving the efficiency of test-time scaling.
arXiv Detail & Related papers (2025-02-25T00:21:14Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.<n>Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - CREAM: Consistency Regularized Self-Rewarding Language Models [34.325289477993586]
Self-rewarding large language models (LLM) have successfully applied LLM-as-a-Judge to improve the alignment performance without the need of human annotations for preference data.
However, there is no guarantee of accuracy in the rewarding and ranking, which is critical for ensuring accurate rewards and high-quality preference data.
We propose a Consistency Regularized sElf-rewarding lAnguage Model (CREAM) that leverages the rewarding consistency across different iterations to regularize the self-rewarding training.
arXiv Detail & Related papers (2024-10-16T16:51:01Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Model Cascading for Code: A Cascaded Black-Box Multi-Model Framework for Cost-Efficient Code Completion with Self-Testing [20.445496441396028]
We introduce a novel framework combining model cascading and inference-time self-testing algorithms to find multiple near-optimal self-testing options on the cost-accuracy tradeoff.<n>Our approach leverages self-generated tests to both enhance accuracy and evaluate model cascading decisions.<n> Experimental results show that our cascading approach reduces costs by an average of 26%, and up to 70% in the best case.
arXiv Detail & Related papers (2024-05-24T16:20:04Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Lightweight reranking for language model generations [26.942659041383596]
We present a novel approach for reranking Large Language Models (LLMs) generations.
Unlike other techniques that might involve additional inferences or training a specialized reranker, our approach relies on easy to compute pairwise statistics.
We show strong improvements for selecting the best k generations for code generation tasks as well as robust improvements for the best generation for the tasks of autoformalization, summarization, and translation.
arXiv Detail & Related papers (2023-07-11T17:51:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.