Determinant and Derivative-Free Quantum Monte Carlo Within the
Stochastic Representation of Wavefunctions
- URL: http://arxiv.org/abs/2402.06577v1
- Date: Fri, 9 Feb 2024 17:51:32 GMT
- Title: Determinant and Derivative-Free Quantum Monte Carlo Within the
Stochastic Representation of Wavefunctions
- Authors: Liam Bernheimer, Hristiana Atanasova, and Guy Cohen
- Abstract summary: Describing the ground states of continuous, real-space quantum many-body systems is a significant computational challenge.
Recent progress was made by variational methods based on machine learning (ML) ansatzes.
We argue that combining SRW with path integral techniques leads to a new formulation that overcomes all three problems simultaneously.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Describing the ground states of continuous, real-space quantum many-body
systems, like atoms and molecules, is a significant computational challenge
with applications throughout the physical sciences. Recent progress was made by
variational methods based on machine learning (ML) ansatzes. However, since
these approaches are based on energy minimization, ansatzes must be twice
differentiable. This (a) precludes the use of many powerful classes of ML
models; and (b) makes the enforcement of bosonic, fermionic, and other
symmetries costly. Furthermore, (c) the optimization procedure is often
unstable unless it is done by imaginary time propagation, which is often
impractically expensive in modern ML models with many parameters. The
stochastic representation of wavefunctions (SRW), introduced in Nat Commun 14,
3601 (2023), is a recent approach to overcoming (c). SRW enables imaginary time
propagation at scale, and makes some headway towards the solution of problem
(b), but remains limited by problem (a). Here, we argue that combining SRW with
path integral techniques leads to a new formulation that overcomes all three
problems simultaneously. As a demonstration, we apply the approach to
generalized ``Hooke's atoms'': interacting particles in harmonic wells. We
benchmark our results against state-of-the-art data where possible, and use it
to investigate the crossover between the Fermi liquid and the Wigner molecule
within closed-shell systems. Our results shed new light on the competition
between interaction-driven symmetry breaking and kinetic-energy-driven
delocalization.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Simulating continuous-space systems with quantum-classical wave functions [0.0]
Non-relativistic interacting quantum many-body systems are naturally described in terms of continuous-space Hamiltonians.
Current algorithms require discretization, which usually amounts to choosing a finite basis set, inevitably introducing errors.
We propose an alternative, discretization-free approach that combines classical and quantum resources in a global variational ansatz.
arXiv Detail & Related papers (2024-09-10T10:54:59Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - The Half Transform Ansatz: Quarkonium Dynamics in Quantum Phase Space [0.0]
We present a method to cast the Schrodinger Equation into a hyper-geometric form which can be solved for the phase space wave function and its energy eigenvalues.
We also analyze the behavior of these wave functions, which suggest a correlation between radial momentum and the upper limit of existence in charm-anticharm mesons.
arXiv Detail & Related papers (2023-03-28T23:38:57Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Bootstrapping the gap in quantum spin systems [0.7106986689736826]
We use the equations of motion to develop an analogue of the conformal block expansion for matrix elements.
The method can be applied to any quantum mechanical system with a local Hamiltonian.
arXiv Detail & Related papers (2022-11-07T19:07:29Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Non-equilibrium quantum impurity problems via matrix-product states in
the temporal domain [0.0]
We propose an approach to analyze impurity dynamics based on the matrix-product state (MPS) representation of the Feynman-Vernon influence functional (IF)
We obtain explicit expressions of the wave function for a family of one-dimensional reservoirs, and analyze the scaling of TE with the evolution time for different reservoir's initial states.
The approach can be applied to a number of experimental setups, including highly non-equilibrium transport via quantum dots and real-time formation of impurity-reservoir correlations.
arXiv Detail & Related papers (2022-05-10T16:05:25Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Combining Floquet and Lyapunov techniques for time-dependent problems in
optomechanics and electromechanics [0.0]
Cavity optomechanics and electromechanics form an established field of research investigating the interactions between electromagnetic fields and the motion of quantum mechanical resonators.
In many applications, linearised form of the interaction is used, which allows for the system dynamics to be fully described using a Lyapunov equation for the covariance matrix of the Wigner function.
This approach is problematic in situations where the Hamiltonian becomes time dependent as is the case for systems driven at multiple frequencies simultaneously.
We show how the lengthy process of applying the Floquet formalism to the original equations of motion and deriving a Lyapunov equation from their time-
arXiv Detail & Related papers (2020-02-28T16:20:27Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.