論文の概要: Comparison of machine learning and statistical approaches for digital
elevation model (DEM) correction: interim results
- arxiv url: http://arxiv.org/abs/2402.06688v1
- Date: Thu, 8 Feb 2024 16:32:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 19:59:17.992231
- Title: Comparison of machine learning and statistical approaches for digital
elevation model (DEM) correction: interim results
- Title(参考訳): デジタル標高モデル(DEM)修正のための機械学習と統計的アプローチの比較:中間結果
- Authors: Chukwuma Okolie, Adedayo Adeleke, Julian Smit, Jon Mills, Iyke
Maduako, Caleb Ogbeta
- Abstract要約: そこで本研究では,DEM補正のための勾配強化決定木(GBDT)の最近の3つの実装との比較結果について紹介する。
我々のこれまでの研究は、機械学習アプローチの可能性を示しており、特にDEM修正のためのグラデーションアップされた決定木(GBDT)が提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several methods have been proposed for correcting the elevation bias in
digital elevation models (DEMs) for example, linear regression. Nowadays,
supervised machine learning enables the modelling of complex relationships
between variables, and has been deployed by researchers in a variety of fields.
In the existing literature, several studies have adopted either machine
learning or statistical approaches in the task of DEM correction. However, to
our knowledge, none of these studies have compared the performance of both
approaches, especially with regard to open-access global DEMs. Our previous
work has already shown the potential of machine learning approaches,
specifically gradient boosted decision trees (GBDTs) for DEM correction. In
this study, we share some results from the comparison of three recent
implementations of gradient boosted decision trees (XGBoost, LightGBM and
CatBoost), versus multiple linear regression (MLR) for enhancing the vertical
accuracy of 30 m Copernicus and AW3D global DEMs in Cape Town, South Africa.
- Abstract(参考訳): ディジタル標高モデル(DEM)の傾きバイアスを補正するいくつかの手法が提案されている。
今日では、教師付き機械学習は変数間の複雑な関係のモデリングを可能にし、様々な分野の研究者によって展開されている。
既存の文献では、DEM補正のタスクに機械学習または統計的アプローチを採用する研究がいくつかある。
しかし、我々の知る限り、これらの研究はどちらのアプローチも、特にオープンアクセスグローバルなDEMについて比較していない。
これまでの研究では、機械学習アプローチの可能性、特にDEM修正のためのグラデーション強化決定木(GBDT)がすでに示されています。
本研究では,最近の3つの勾配強化決定木 (xgboost, lightgbm, catboost) の実装と, 南アフリカ, ケープタウンにおける30mコペルニクスおよびaw3dグローバルデムの垂直精度向上のための多重線形回帰 (mlr) の比較結果を紹介する。
関連論文リスト
- MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
Adam、Adam、およびそれらの変種のような大規模な勾配アルゴリズムは、この種のトレーニングの開発の中心となっている。
本稿では,事前条件付き勾配最適化手法と,スケールドモーメント手法による分散低減を両立させる枠組みを提案する。
論文 参考訳(メタデータ) (2024-11-15T18:57:39Z) - Classifier-guided Gradient Modulation for Enhanced Multimodal Learning [50.7008456698935]
Gradient-Guided Modulation (CGGM) は,マルチモーダル学習と勾配のバランスをとる新しい手法である。
UPMC-Food 101, CMU-MOSI, IEMOCAP, BraTSの4つのマルチモーダルデータセットについて広範な実験を行った。
CGGMはすべてのベースラインや最先端のメソッドを一貫して上回る。
論文 参考訳(メタデータ) (2024-11-03T02:38:43Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
大型言語モデル(LLM)はゼロショット設定でグラデーション先行として振る舞うことができる。
本稿では,LSMと算術符号を統合する新しい手法であるLM-GCを紹介する。
論文 参考訳(メタデータ) (2024-09-26T13:38:33Z) - On Improving the Algorithm-, Model-, and Data- Efficiency of Self-Supervised Learning [18.318758111829386]
非パラメトリックなインスタンス識別に基づく効率的なシングルブランチSSL手法を提案する。
また,確率分布と正方形根版とのKL分散を最小限に抑える新しい自己蒸留損失を提案する。
論文 参考訳(メタデータ) (2024-04-30T06:39:04Z) - SIRAN: Sinkhorn Distance Regularized Adversarial Network for DEM
Super-resolution using Discriminative Spatial Self-attention [5.178465447325005]
DEM(Digital Elevation Model)は、リモートセンシング領域において、表面標高情報に関連するさまざまなアプリケーションを分析し、探索するための重要な側面である。
本研究では,高分解能マルチスペクトル(MX)衛星画像を用いた高分解能DEMの生成について検討する。
本稿では,Sinkhorn 距離を従来の GAN に最適化することで,対角学習の安定性を向上する目的関数を提案する。
論文 参考訳(メタデータ) (2023-11-27T12:03:22Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
フォワード学習は、ディープニューラルネットワークを学ぶためのバックプロップに代わる生物学的に妥当な代替手段である。
重みよりも活性化に摂動を適用することにより、前方勾配のばらつきを著しく低減できることを示す。
提案手法はMNIST と CIFAR-10 のバックプロップと一致し,ImageNet 上で提案したバックプロップフリーアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-10-07T03:52:27Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
本稿では,非線形解釈型機械学習(ML)モデルを用いた分類問題について検討する。
木々の様々なアンサンブルは、不均衡な合成データセットと実世界のデータセットを用いて線形モデルと比較される。
2つの実世界のデータセットのうちの1つで、知識蒸留法は改善されたAUCスコアを達成する。
論文 参考訳(メタデータ) (2022-04-04T17:56:37Z) - Intermediate Layers Matter in Momentum Contrastive Self Supervised
Learning [1.933681537640272]
自己教師付き学習において,画像の2つの拡張版を中間層で表現することで,モーメントコントラスト(MoCo)法の改善が期待できることを示す。
特徴類似性分析とレイヤワイズ探索を用いて,新しい手法を用いて学習したモデルを分析する。
論文 参考訳(メタデータ) (2021-10-27T22:40:41Z) - Surrogate-based variational data assimilation for tidal modelling [0.0]
データ同化(DA)は、物理知識と観測を結合するために広く用いられている。
気候変動の文脈では、古いキャリブレーションは必ずしも新しいシナリオに使用できない。
これにより、DA計算コストの問題が提起される。
複素モデルを代用する2つの方法が提案されている。
論文 参考訳(メタデータ) (2021-06-08T07:39:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。