論文の概要: Domain Adaptation Using Pseudo Labels
- arxiv url: http://arxiv.org/abs/2402.06809v2
- Date: Tue, 5 Mar 2024 03:51:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 00:18:56.025878
- Title: Domain Adaptation Using Pseudo Labels
- Title(参考訳): 擬似ラベルを用いたドメイン適応
- Authors: Sachin Chhabra, Hemanth Venkateswara and Baoxin Li
- Abstract要約: ラベル付き対象データがない場合、教師なしのドメイン適応アプローチは、ソースとターゲットドメインの限界分布を整合させようとする。
我々は,複数段階の擬似ラベル修正手法を用いて,対象ドメインの正確なラベルを決定するために事前訓練ネットワークをデプロイする。
複数のデータセットに対する結果から, 複雑な最先端技術と比較して, 簡単な手順の有効性が示された。
- 参考スコア(独自算出の注目度): 16.79672078512152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the absence of labeled target data, unsupervised domain adaptation
approaches seek to align the marginal distributions of the source and target
domains in order to train a classifier for the target. Unsupervised domain
alignment procedures are category-agnostic and end up misaligning the
categories. We address this problem by deploying a pretrained network to
determine accurate labels for the target domain using a multi-stage
pseudo-label refinement procedure. The filters are based on the confidence,
distance (conformity), and consistency of the pseudo labels. Our results on
multiple datasets demonstrate the effectiveness of our simple procedure in
comparison with complex state-of-the-art techniques.
- Abstract(参考訳): ラベル付きターゲットデータがない場合、教師なしのドメイン適応アプローチは、ターゲットの分類器を訓練するために、ソースとターゲットドメインの限界分布を調整することを求める。
教師なしドメインアライメント手順はカテゴリに依存しず、最終的にカテゴリを誤認する。
我々は,複数段階の擬似ラベル修正手法を用いて,対象ドメインの正確なラベルを決定するために事前学習ネットワークを配置することでこの問題に対処する。
フィルタは疑似ラベルの信頼性、距離(整合性)、一貫性に基づいている。
複数のデータセットに対する結果から, 複雑な最先端技術と比較して, 簡単な手順の有効性が示された。
関連論文リスト
- Domain-Invariant Feature Alignment Using Variational Inference For
Partial Domain Adaptation [6.04077629908308]
提案手法は既存の手法と同等の精度で優れている。
多くのクロスドメイン分類タスクにおける実験結果から,提案手法は既存手法に優れた精度と同等の精度をもたらすことが示された。
論文 参考訳(メタデータ) (2022-12-03T10:39:14Z) - Semi-Supervised Domain Adaptation by Similarity based Pseudo-label
Injection [0.735996217853436]
半教師付きドメイン適応(SSDA)の主な課題の1つは、ラベル付きソースの数とターゲットサンプルのスキュード比である。
SSDAの最近の研究は、ラベル付き対象サンプルとソースサンプルのみを整列させることで、ターゲットドメインとソースドメインの整列が不完全な可能性があることを示している。
提案手法では,2つのドメインを整合させるために,コントラスト的損失を利用して意味論的かつドメインに依存しない特徴空間を学習する。
論文 参考訳(メタデータ) (2022-09-05T10:28:08Z) - Cycle Label-Consistent Networks for Unsupervised Domain Adaptation [57.29464116557734]
ドメイン適応は、ラベル付きソースドメインを活用して、異なる分布を持つラベル付きターゲットドメインの分類子を学ぶことを目的としています。
本稿では,分類ラベルのサイクル整合性を利用して,シンプルで効率的な領域適応手法,すなわちCycle Label-Consistent Network (CLCN)を提案する。
MNIST-USPS-SVHN, Office-31, Office-Home, Image CLEF-DAベンチマークに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-05-27T13:09:08Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
半監視されたドメイン適応では、残りのターゲットサンプルのターゲットドメインガイド機能内のクラスごとのいくつかのラベル付きサンプルが、その周辺に集約される。
この問題に対処するために,クロスドメイン適応クラスタリングという新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-19T16:07:32Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
マルチソースドメイン適応(MSDA)は、複数のラベル付きソースドメインからラベルなしターゲットドメインへのタスク知識の転送を扱う。
ラベル管理下のドメインを暗黙的に整列させる深層モデルが観察されるMSDAに対して、異なる視点を提示する。
論文 参考訳(メタデータ) (2021-03-20T12:44:13Z) - Learning Target Domain Specific Classifier for Partial Domain Adaptation [85.71584004185031]
非教師付きドメイン適応(UDA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送する際の分散不一致を低減することを目的としている。
本稿では,ターゲットラベル空間をソースラベル空間に仮定する,より現実的なUDAシナリオに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-25T02:28:24Z) - Domain Adaptation with Auxiliary Target Domain-Oriented Classifier [115.39091109079622]
ドメイン適応は、知識をラベルリッチだが異質なドメインからラベルケアドメインに転送することを目的としている。
最も一般的なSSLテクニックの1つは、ラベルのない各データに擬似ラベルを割り当てる擬似ラベル付けである。
我々はAuxiliary Target Domain-Oriented (ATDOC) と呼ばれる新しい擬似ラベリングフレームワークを提案する。
ATDOCは、ターゲットデータのみのための補助分類器を導入してバイアスを軽減し、擬似ラベルの品質を向上させる。
論文 参考訳(メタデータ) (2020-07-08T15:01:35Z) - Learning a Domain Classifier Bank for Unsupervised Adaptive Object
Detection [48.19258721979389]
本稿では,ディープネットワークに基づく物体検出のための細粒度領域アライメント手法を提案する。
そこで我々は,適応検出器として細粒度領域アライメント機構を備えた素物体検出器を開発した。
3つの一般的な転送ベンチマーク実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-07-06T09:12:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。