Forecasting Events in Soccer Matches Through Language
- URL: http://arxiv.org/abs/2402.06820v2
- Date: Fri, 26 Apr 2024 11:45:02 GMT
- Title: Forecasting Events in Soccer Matches Through Language
- Authors: Tiago Mendes-Neves, Luís Meireles, João Mendes-Moreira,
- Abstract summary: This paper introduces an approach to predicting the next event in a soccer match.
It bears remarkable similarities to the problem faced by Large Language Models (LLMs)
- Score: 0.7373617024876725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an approach to predicting the next event in a soccer match, a challenge bearing remarkable similarities to the problem faced by Large Language Models (LLMs). Unlike other methods that severely limit event dynamics in soccer, often abstracting from many variables or relying on a mix of sequential models, our research proposes a novel technique inspired by the methodologies used in LLMs. These models predict a complete chain of variables that compose an event, significantly simplifying the construction of Large Event Models (LEMs) for soccer. Utilizing deep learning on the publicly available WyScout dataset, the proposed approach notably surpasses the performance of previous LEM proposals in critical areas, such as the prediction accuracy of the next event type. This paper highlights the utility of LEMs in various applications, including match prediction and analytics. Moreover, we show that LEMs provide a simulation backbone for users to build many analytics pipelines, an approach opposite to the current specialized single-purpose models. LEMs represent a pivotal advancement in soccer analytics, establishing a foundational framework for multifaceted analytics pipelines through a singular machine-learning model.
Related papers
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - Utilizing Large Language Models for Event Deconstruction to Enhance Multimodal Aspect-Based Sentiment Analysis [2.1329326061804816]
This paper introduces Large Language Models (LLMs) for event decomposition and proposes a reinforcement learning framework for Multimodal Aspect-based Sentiment Analysis (MABSA-RL)
Experimental results show that MABSA-RL outperforms existing advanced methods on two benchmark datasets.
arXiv Detail & Related papers (2024-10-18T03:40:45Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - The Emergence of Large Language Models in Static Analysis: A First Look
through Micro-Benchmarks [3.848607479075651]
We investigate the role that current Large Language Models (LLMs) can play in improving callgraph analysis and type inference for Python programs.
Our study reveals that LLMs show promising results in type inference, demonstrating higher accuracy than traditional methods, yet they exhibit limitations in callgraph analysis.
arXiv Detail & Related papers (2024-02-27T16:53:53Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - Estimating Player Performance in Different Contexts Using Fine-tuned Large Events Models [0.7373617024876725]
This paper introduces an innovative application of Large Event Models (LEMs) in soccer analytics.
LEMs predict variables for subsequent events rather than words.
We focus on fine-tuning LEMs with the WyScout dataset for the 2017-18 Premier League season.
arXiv Detail & Related papers (2024-02-09T22:47:25Z) - Mixture-of-Linguistic-Experts Adapters for Improving and Interpreting
Pre-trained Language Models [22.977852629450346]
We propose a method that combines two popular research areas by injecting linguistic structures into pre-trained language models.
In our approach, parallel adapter modules encoding different linguistic structures are combined using a novel Mixture-of-Linguistic-Experts architecture.
Our experiment results show that our approach can outperform state-of-the-art PEFT methods with a comparable number of parameters.
arXiv Detail & Related papers (2023-10-24T23:29:06Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
We present BLESS, a performance benchmark of the most recent state-of-the-art large language models (LLMs) on the task of text simplification (TS)
We assess a total of 44 models, differing in size, architecture, pre-training methods, and accessibility, on three test sets from different domains (Wikipedia, news, and medical) under a few-shot setting.
Our evaluation indicates that the best LLMs, despite not being trained on TS, perform comparably with state-of-the-art TS baselines.
arXiv Detail & Related papers (2023-10-24T12:18:17Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.